
Real-Time Workshop® 7
Getting Started Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop® Getting Started Guide

© COPYRIGHT 2002–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
July 2002 First printing New for Version 5.0 (Release 13)
June 2004 Second printing Revised for Version 6.0 (Release 14)
October 2004 Third printing Revised for Version 6.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Fourth printing Revised for Version 6.3 (Release 14SP3)
March 2006 Online Only Revised for Version 6.4 (Release 2006a)
September 2006 Online Only Revised for Version 6.5 (Release 2006b)
March 2007 Fifth printing Revised for Version 6.6 (Release 2007a)
September 2007 Online Only Revised for Version 7.0 (Release 2007b)
March 2008 Online Only Revised for Version 7.1 (Release 2008a)
October 2008 Sixth printing Revised for Version 7.2 (Release 2008b)
March 2009 Online Only Revised for Version 7.3 (Release 2009a)
September 2009 Online Only Revised for Version 7.4 (Release 2009b)

Contents

Getting Started with Real-Time Workshop
Technology

1
What You Need to Know to Use Real-Time Workshop
Technology . 1-2

What You Can Accomplish Using Real-Time Workshop
Technology . 1-3

How the Technology Can Fit Into Your Development
Process . 1-6
Tools for Algorithm Development . 1-6
Target Environments . 1-10
Applications . 1-14

How You Can Apply the Technology to the V-Model for
System Development . 1-16
What Is the V-Model? . 1-16
Types of Simulation and Prototyping 1-18
Types of In-the-Loop Testing for Verification and
Validation . 1-19

How to Develop an Application Using Real-Time
Workshop Software

2
Workflow for Developing Applications Using Real-Time
Workshop Software . 2-2

Mapping Application Requirements to Configuration
Options . 2-4

v

Adjusting Configuration Settings 2-6

Running the Model Advisor . 2-7

Generating Code . 2-10

Building an Executable Program . 2-11

Verifying the Executable Program 2-14

Naming and Saving the Configuration Set 2-15
Adding and Copying Configuration Sets 2-15

Documenting the Project . 2-17

Working with the Real-TimeWorkshop Software

3
Demonstration Model: rtwdemo_f14 3-3

Building a Generic Real-Time Program 3-4
Tutorial Overview . 3-4
Working and Build Directories . 3-4
Setting Program Parameters . 3-5
Selecting the Target Configuration 3-7
Building and Running the Program 3-13
Contents of the Build Directory . 3-15

Data Logging . 3-18
Tutorial Overview . 3-18
Data Logging During Simulation . 3-19
Data Logging from Generated Code 3-22

Code Verification . 3-27
Tutorial Overview . 3-27
Logging Signals via Scope Blocks . 3-27

vi Contents

Logging Simulation Data . 3-29
Logging Data from the Generated Program 3-29
Comparing Numerical Results of the Simulation and the
Generated Program . 3-31

First Look at Generated Code . 3-33
Tutorial Overview . 3-33
Setting Up the Model . 3-33
Generating Code Without Buffer Optimization 3-35
Generating Code with Buffer Optimization 3-39
Further Optimization: Expression Folding 3-41
HTML Code Generation Reports . 3-44

Working with External Mode Using GRT 3-47
Tutorial Overview . 3-47
Setting Up the Model . 3-48
Building the Target Executable . 3-50
Running the External Mode Target Program 3-54
Tuning Parameters . 3-59

Generating Code for a Referenced Model 3-61
Tutorial Overview . 3-61
Creating and Configuring a Subsystem Within the vdp
Model . 3-61

Converting the Model to Use Model Referencing 3-64
Generating Model Reference Code for a GRT Target 3-68
Working with Project Directories . 3-71

Documenting a Code Generation Project 3-73
Tutorial Overview . 3-73
Generating Code for the Model . 3-74
Opening Report Generator . 3-75
Setting Report Output Options . 3-76
Specifying Models and Subsystems to Include in a
Report . 3-78

Setting Component Options . 3-78
Generating the Report . 3-79
Reviewing the Generated Report . 3-79

vii

Index

viii Contents

1

Getting Started with
Real-Time Workshop
Technology

• “What You Need to Know to Use Real-Time Workshop Technology” on
page 1-2

• “What You Can Accomplish Using Real-Time Workshop Technology” on
page 1-3

• “How the Technology Can Fit Into Your Development Process” on page 1-6

• “How You Can Apply the Technology to the V-Model for System
Development” on page 1-16

1 Getting Started with Real-Time Workshop® Technology

What You Need to Know to Use Real-Time Workshop
Technology

Before you use Real-Time Workshop® technology, you should be familiar with

• Using the Simulink® and Stateflow® software to create models or state
machines as block diagrams, running such simulations in Simulink, and
interpreting output in the MATLAB® workspace

• High-level programming language concepts applied to real-time systems

While you do not need to program in C or other programming languages to
create, test, and deploy real-time systems using the Real-Time Workshop
software, successful emulation and deployment of real-time systems requires
familiarity with parameters and design constraints. The Real-Time Workshop
documentation assumes you have a basic understanding of real-time system
concepts, terminology, and environments.

If you are familiar with C language constructs and want to learn about how
to map commonly used C constructs to code generated from model design
patterns that include Simulink blocks, Stateflow charts, and Embedded
MATLAB™ functions, see Technical Solution 1-6AWSQ9 on the MathWorks™
Web site.

1-2

http://www.mathworks.com/support/solutions/data/1-6AWSQ9.html?product=SL

What You Can Accomplish Using Real-Time Workshop® Technology

What You Can Accomplish Using Real-Time Workshop
Technology

Real-Time Workshop technology generates C or C++ source code and
executables for algorithms that you model graphically in the Simulink
environment or programmatically with the Embedded MATLAB language
subset. You can generate code for any Simulink blocks and MATLAB
functions that are useful for real-time or embedded applications. The
generated source code and executables for floating-point algorithms match
the functional behavior of Simulink simulations and Embedded MATLAB
code execution to high degrees of fidelity. Using the Simulink® Fixed Point™
product, you can generate fixed-point code that provides a bit-wise accurate
match to model simulation results. Such broad support and high degrees
of accuracy are possible because Real-Time Workshop technology is tightly
integrated with the MATLAB and Simulink execution and simulation
engines. In fact, the built-in accelerated simulation modes in Simulink use
Real-Time Workshop technology.

You apply Real-Time Workshop technology explicitly with the Real-Time
Workshop and Real-Time Workshop® Embedded Coder™ products. Using the
Real-Time Workshop product, you can

• Generate source code and executables for discrete-time, continuous-time
(fixed-step), and hybrid systems modeled in Simulink

• Use the generated code for real-time and non-real-time applications,
including simulation acceleration, rapid prototyping, and
hardware-in-the-loop (HIL) testing

• Tune and monitor the generated code by using Simulink blocks and built-in
analysis capabilities, or run and interact with the code completely outside
the MATLAB and Simulink environment

• Generate code for finite state machines modeled in Stateflow event-based
modeling software, using the optional Stateflow® Coder™ product

• Produce source code for many Simulink products and blocksets provided
by The MathWorks™ and third-party vendors.

The Real-Time Workshop Embedded Coder product extends the Real-Time
Workshop product with features that are important for embedded software

1-3

http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/featured/embeddedmatlab/
http://www.mathworks.com/products/featured/embeddedmatlab/
http://www.mathworks.com/products/simfixed/
http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/products/sfcoder/

1 Getting Started with Real-Time Workshop® Technology

development. Using the Real-Time Workshop Embedded Coder add-on
product, you gain access to all aspects of Real-Time Workshop technology
and can generate code that has the clarity and efficiency of professional
handwritten code. For example, you can

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems

• Customize the appearance of the generated code

• Optimize the generated code for a specific target environment

• Integrate existing (legacy) applications, functions, and data

• Enable tracing, reporting, and testing options that facilitate code
verification activities

The following table compares typical applications and key capabilities for
these two code generation products.

Product Typical Applications Key Capabilities

Real-Time Workshop Simulation acceleration

Simulink model encryption

Rapid prototyping

HIL testing

Generate code for discrete-time,
continuous-time (fixed-step),
and hybrid systems modeled in
Simulink

Tune and monitor the execution of
generated code by using Simulink
blocks and built-in analysis
capabilities or by running and
interacting with the code outside
the MATLAB and Simulink
environment

Generate code for finite state
machines modeled in Stateflow
event-based modeling software,
using the optional Stateflow Coder
product

1-4

http://www.mathworks.com/products/rtw/

What You Can Accomplish Using Real-Time Workshop® Technology

Product Typical Applications Key Capabilities

Generate code for many
MathWorks and third-party
Simulink products and blocksets

Integrate existing applications,
functions, and data

Real-Time Workshop
Embedded Coder

All applications listed for the
Real-Time Workshop product

Embedded systems

On-target rapid prototyping
boards

Microprocessors used in mass
production

All capabilities listed for the
Real-Time Workshop product

Generate code that has the clarity
and efficiency of professional
handwritten code

Customize the appearance and
performance of the code for specific
target environments

Enable tracing, reporting, and
testing options that facilitate code
verification activities

1-5

http://www.mathworks.com/products/rtwembedded/
http://www.mathworks.com/products/rtwembedded/

1 Getting Started with Real-Time Workshop® Technology

How the Technology Can Fit Into Your Development
Process

In this section...

“Tools for Algorithm Development” on page 1-6

“Target Environments” on page 1-10

“Applications” on page 1-14

Tools for Algorithm Development
You can use Real-Time Workshop technology to generate standalone C or C++
source code for algorithms that you develop the following ways:

• With MATLAB code, using the Embedded MATLAB language subset

• As Simulink models

• With MATLAB code that you incorporate into Simulink models

The Embedded MATLAB language subset supports MATLAB operators
and functions for floating-point and fixed-point math. Simulink support for
dynamic system simulation, conditional execution of system semantics, and
large model hierarchies provides an environment for modeling periodic and
event-driven algorithms commonly found in embedded systems. Real-Time
Workshop technology generates code for most Simulink blocks and many
MathWorks products.

If you are familiar with C language constructs and want to learn about how
to map commonly used C constructs to code generated from model design
patterns that include Simulink blocks, Stateflow charts, and Embedded
MATLAB functions, see Technical Solution 1-6AWSQ9 on the MathWorks
Web site.

The following table lists products that the Real-Time Workshop and
Real-Time Workshop Embedded Coder software support.

1-6

http://www.mathworks.com/products/featured/embeddedmatlab/functions.html
http://www.mathworks.com/products/featured/embeddedmatlab/functions.html
http://www.mathworks.com/support/solutions/data/1-6AWSQ9.html?product=SL

How the Technology Can Fit Into Your Development Process

Products Supported by Real-Time
Workshop and Real-Time Workshop
Embedded Coder

Notes

Aerospace Blockset™ —

Communications Blockset™ —

Control System Toolbox™ —

Embedded IDE Link™ —

Fuzzy Logic Toolbox™ —

Gauges Blockset™ —

MATLAB Details: Supports Embedded MATLAB

Model-Based Calibration Toolbox™ —

Model Predictive Control Toolbox™ —

PolySpace® Model Link™ SL Not supported by Real-Time Workshop

Real-Time Windows Target™ —

Signal Processing Blockset™ Details: “Simulink Block Data Type Support
for Signal Processing Blockset” Table (enter the
MATLAB showsignalblockdatatypetable
command)

SimDriveline™ —

SimElectronics® —

SimHydraulics® —

SimMechanics™ —

SimPowerSystems™ Not supported by Real-Time Workshop
Embedded Coder

Simscape™ —

Simulink Details: “Simulink Built-In Blocks That
Support Code Generation” Table in the
Real-Time Workshop documentation

Simulink Fixed Point —

Simulink® 3D Animation™ —

1-7

1 Getting Started with Real-Time Workshop® Technology

Products Supported by Real-Time
Workshop and Real-Time Workshop
Embedded Coder

Notes

Simulink® Design Optimization™ —

Simulink® Report Generator™ —

Simulink® Verification and Validation™ —

Stateflow and Stateflow Coder —

System Identification Toolbox™ Exceptions:

• Nonlinear IDNLGREY Model, IDDATA
Source, IDDATA Sink, and estimator blocks

• Nonlinear ARX models that contain custom
regressors

• neuralnet nonlinearities

• customnet nonlinearities

Target Support Package™ —

Vehicle Network Toolbox™ —

Video and Image Processing Blockset™ —

xPC Target™ —

xPC Target Embedded Option™ —

Use of both Embedded MATLAB code and Simulink models is typical for
Model-Based Design projects where you start developing an algorithm
through research and development or advanced production, using MATLAB,
and then use Simulink for system deployment and verification. Benefits of
this approach include:

• Richer system simulation environment

• Ability to verify the Embedded MATLAB code

• Real-Time Workshop and Real-Time Workshop Embedded Coder C/C++
code generation for the model and embedded M-code

1-8

How the Technology Can Fit Into Your Development Process

The following table summarizes how to generate C or C++ code for each of the
three approaches and identifies where you can find more information.

If you develop
algorithms using...

You generate code by... For more information, see...

Embedded MATLAB
language subset

Entering the Real-Time
Workshop function emlc in the
MATLAB Command Window.

“Working with the Embedded
MATLAB Subset”

“Converting MATLAB Code to
C Code”

Simulink Configuring and initiating code
generation for your model or
subsystem with the Simulink
Configuration Parameters
dialog.

“Workflow for Developing
Applications Using Real-Time
Workshop Software” on page
2-2 in Getting Started with
Real-Time Workshop

Embedded MATLAB
language subset and
Simulink

Including Embedded MATLAB
code in Simulink models or
subsystems by using the
Embedded MATLAB Function
block.

To use this block, you can do
one of the following:

• Copy your M-code into the
block.

• Call your M-code from the
block by referencing the
appropriate M-files on the
MATLAB path.

“Working with the Embedded
MATLAB Subset” in
the Embedded MATLAB
documentation

The following figure shows the three design and deployment environment
options. Although not shown in the figure, other products that support code
generation, such as Stateflow software, are available.

1-9

1 Getting Started with Real-Time Workshop® Technology

MATLAB® Simulink®

Other MATLAB
code

Embedded MATLAB™

language subset
Embedded MATLAB™

Function block

Real-Time Workshop® technology

C or C++

Compiler or
IDE toolchain

Executable
(runs in target environment)

Other Simulink
blocks

Target Environments
In addition to generating source code for a model or subsystem, Real-Time
Workshop technology generates make or project files you need to build an
executable for a specific target environment. The generated make or project
files are optional. That is, if you prefer, you can build an executable for the
generated source files by using an existing target build environment, such
as a third-party integrated development environment (IDE). Applications
of code generated with Real-Time Workshop technology range from calling
a few exported C or C++ functions on a host computer to generating a
complete executable using a custom build process, for custom hardware, in an
environment completely separate from the host computer running MATLAB
and Simulink.

1-10

How the Technology Can Fit Into Your Development Process

Real-Time Workshop technology provides built-in system target files that
generate, build, and execute code for specific target environments. These
system target files offer varying degrees of support for interacting with the
generated code to log data, tune parameters, and experiment with or without
Simulink as the external interface to your generated code.

Before you select a system target file, you need to identify the target
environment on which you expect to execute your generated code. The three
most common target environments include:

Target
Environment

Description

Host computer The same computer that runs MATLAB and Simulink. Typically, a host
computer is a PC or UNIX®1 environment that uses a non-real-time
operating system, such as Microsoft®Windows® or Linux®2. Non-real-time
(general purpose) operating systems are nondeterministic. For example,
they might suspend code execution to run an operating system service
and then, after providing the service, continue code execution. Thus, the
executable for your generated code might run faster or slower than the
sample rates you specified in your model.

Real-time
simulator

A different computer than the host computer. A real-time simulator can
be a PC or UNIX environment that uses a real-time operating system
(RTOS), such as:

• xPC Target system

• A real-time Linux system

• A Versa Module Eurocard (VME) chassis with PowerPC® processors
running a commercial RTOS, such as VxWorks® from Wind River®

Systems

The generated code runs in real time and behaves deterministically.
Although, the exact nature of execution varies based on the particular
behavior of the system hardware and RTOS.

1. UNIX® is a registered trademark of The Open Group in the United States and other
countries.

2. Linux® is a registered trademark of Linus Torvalds.

1-11

http://en.wikipedia.org/wiki/RTOS
http://en.wikipedia.org/wiki/RTOS
http://www.mathworks.com/products/xpctarget/

1 Getting Started with Real-Time Workshop® Technology

Target
Environment

Description

Typically, a real-time simulator connects to a host computer for data
logging, interactive parameter tuning, and Monte Carlo batch execution
studies.

Embedded
microprocessor

A computer that you eventually disconnect from a host computer and
run standalone as part of an electronics-based product. Embedded
microprocessors range in price and performance, from high-end digital
signal processors (DSPs) used to process communication signals to
inexpensive 8-bit fixed-point microcontrollers used in mass production (for
example, electronic parts produced in the millions of units). Embedded
microprocessors can:

• Use a full-featured RTOS

• Be driven by basic interrupts

• Use rate monotonic scheduling provided with Real-Time Workshop
technology

A target environment can:

• Have single- or multiple-core CPUs

• Be standalone or communicate as part of a computer network

In addition, you can deploy different parts of a Simulink model on different
target environments. For example, it is common to separate the component
(algorithm or controller) portion of a model from the environment (or plant).
Using Simulink to model an entire system (plant and controller) is often
referred to as closed-loop simulation and can provide many benefits such as
early verification of component correctness.

The following figure shows example target environments for code generated
for a model.

1-12

http://en.wikipedia.org/wiki/Rate-monotonic_scheduling

How the Technology Can Fit Into Your Development Process

Co
de

ge
ne

ra
tio

n

Algorithm model

Host
executable

System model

Host computer(s)

Embedded
microprocessor

Real-time
simulator

Environment model

Co
de

ge
ne

ra
tio

n

Co
de

ge
ne

ra
tio

n

1-13

1 Getting Started with Real-Time Workshop® Technology

Applications
The following table lists several ways you can apply Real-Time Workshop
technology in the context of the different target environments.

Application Description

Host Computer

Accelerated simulation You apply techniques to speed up the execution of model
simulation in the context of the MATLAB and Simulink
environment. Accelerated simulations are especially
useful when run time is long compared to the time
associated with compilation and checking whether the
target is up to date.

Rapid simulation You execute code generated for a model in non-real time
on the host computer, but outside the context of the
MATLAB and Simulink environment.

System simulation You integrate components into a larger system. You
provide generated source code and related dependencies
for building in another environment or a host-based
shared library to which other code can dynamically link.

Model encryption You generate a Simulink shareable object library for a
model or subsystem for use by a third-party vendor in
another Simulink simulation environment.

Real-Time Simulator

Rapid prototyping You generate, deploy, and tune code on a real-time
simulator connected to the system hardware (for
example, physical plant or vehicle) being controlled.
This design step is also crucial for validating whether a
component can adequately control the physical system.

System simulation You integrate generated source code and dependencies
for components into a larger system that is built in
another environment. You can use shared library files to
encrypt components for intellectual property protection.

1-14

How the Technology Can Fit Into Your Development Process

Application Description

On-target rapid prototyping You generate code for a detailed design that you can
run in real time on an embedded microprocessor while
tuning parameters and monitoring real-time data. This
design step allows you to assess, interact with, and
optimize code, using embedded compilers and hardware.

Embedded Microprocessor

Production code generation From a model, you generate code that is optimized for
speed, memory usage, simplicity, and if necessary,
compliance with industry standards and guidelines.

Software-in-the-loop (SIL) testing You execute generated code with your plant model
within Simulink to verify successful conversion of
the model to code. You might change the code to
emulate target word size behavior and verify numerical
results expected when the code runs on an embedded
microprocessor, or use actual target word sizes and just
test production code behavior.

Processor-in-the-loop (PIL) testing You test an object code component with a plant
or environment model in an open- or closed-loop
simulation to verify successful model-to-code conversion,
cross-compilation, and software integration.

Hardware-in-the-loop (HIL) testing You verify an embedded system or embedded computing
unit (ECU), using a real-time target environment.

1-15

1 Getting Started with Real-Time Workshop® Technology

How You Can Apply the Technology to the V-Model for
System Development

In this section...

“What Is the V-Model?” on page 1-16

“Types of Simulation and Prototyping” on page 1-18

“Types of In-the-Loop Testing for Verification and Validation” on page 1-19

What Is the V-Model?
The V-model is a representation of system development that highlights
verification and validation steps in the system development process. As the
following figure shows, the left side of the V identifies steps that lead to code
generation, including requirements analysis, system specification, detailed
software design, and coding. The right side focuses on the verification and
validation of steps cited on the left side, including software integration and
system integration.

1-16

How You Can Apply the Technology to the V-Model for System Development

System Specification

Coding

Software Detailed
Design

System Integration
and Calibration

 Hardware-in-the-loop
(HIL) testing

 Processor-in-the-loop
(PIL) testing

Simulation

Rapid simulation

System simulation (export)

Rapid prototyping

 Software-in-the-loop
(SIL) testing

On-target rapid prototyping

Production code generation

Model encryption (export)

Verification and validation

Software Integration

Depending on your application and role in the process, you might focus on one
or more of the steps called out in the V or repeat steps at several stages of
the V. Real-Time Workshop technology and related products provide tooling
you can apply at each step.

The following sections compare

• Types of simulation and prototyping

• Types of in-the-loop testing for verification and validation

For a map of information on applications of Real-Time Workshop technology
identified in the figure, see the following tables:

• “Documenting and Validating Requirements”

1-17

1 Getting Started with Real-Time Workshop® Technology

• “Developing a Model Executable Specification”

• “Developing a Detailed Software Design”

• “Generating the Application Code”

• “Integrating and Verifying Software”

• “Integrating, Verifying, and Calibrating System Components”

Types of Simulation and Prototyping
The following table compares the types of simulation and prototyping
identified on the left side of the V-model diagram.

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Purpose Test and validate
functionality of
concept model

Refine, test,
and validate
functionality of
concept model in
non-real time

Test new ideas
and research

Refine and
calibrate
designs during
development
process

Execution
hardware

Host computer Host computer

Standalone
executable
runs outside
of MATLAB
and Simulink
environment

PC or nontarget
hardware

Embedded
computing
unit (ECU) or
near-production
hardware

1-18

How You Can Apply the Technology to the V-Model for System Development

Host-Based
Simulation

Standalone
Rapid
Simulations

Rapid
Prototyping

On-Target Rapid
Prototyping

Code
efficiency
and I/O
latency

Not applicable Not applicable Less emphasis
on code efficiency
and I/O latency

More emphasis on
code efficiency and
I/O latency

Ease of use
and cost

Can simulate
component
(algorithm or
controller) and
environment (or
plant)

Normal mode
simulation in
Simulink enables
you to access,
display, and
tune data and
parameters while
experimenting

Can accelerate
Simulink
simulations with
Accelerated and
Rapid Accelerated
modes

Easy to simulate
models of hybrid
dynamic systems
that include
components and
environment
models

Ideal for batch
or Monte Carlo
simulations

Can repeat
simulations with
varying data sets,
interactively or
programmatically
with scripts,
without rebuilding
the model

Can be connected
to Simulink
to monitor
signals and tune
parameters

Might require
custom real-time
simulators and
hardware

Might be done
with inexpensive
off-the-shelf PC
hardware and I/O
cards

Might use existing
hardware, thus
less expensive and
more convenient

Types of In-the-Loop Testing for Verification and
Validation
The following table compares the types of in-the-loop testing for verification
and validation identified on the right side of the V-model diagram.

1-19

1 Getting Started with Real-Time Workshop® Technology

SIL Testing PIL Testing
on Embedded
Hardware

PIL Testing on
Instruction Set
Simulator

HIL Testing

Purpose Verify component
source code

Verify component
object code

Verify component
object code

Verify system
functionality

Fidelity and
accuracy

Two options:

Same source
code as target,
but might
have numerical
differences

Changes source
code to emulate
word sizes, but is
bit accurate for
fixed-point math

Same object code

Bit accurate for
fixed-point math

Cycle accurate
since code runs on
hardware

Same object code

Bit accurate for
fixed-point math

Might not be cycle
accurate

Same executable
code

Bit accurate for
fixed-point math

Cycle accurate

Use real and
emulated system
I/O

Execution
platforms

Host Target Host Target

Ease of use
and cost

Desktop
convenience

Executes just in
Simulink

No cost for
hardware

Executes on desk
or test bench

Uses hardware —
process board and
cables

Desktop
convenience

Executes just on
host computer
with Simulink
and integrated
development
environment
(IDE)

No cost for
hardware

Executes on test
bench or in lab

Uses hardware
— processor,
embedded
computer unit
(ECU), I/O devices,
and cables

Real time
capability

Not real time Not real time
(between samples)

Not real time
(between
samples)

Hard real time

1-20

2

How to Develop an
Application Using
Real-Time Workshop
Software

• “Workflow for Developing Applications Using Real-Time Workshop
Software” on page 2-2

• “Mapping Application Requirements to Configuration Options” on page 2-4

• “Adjusting Configuration Settings” on page 2-6

• “Running the Model Advisor” on page 2-7

• “Generating Code” on page 2-10

• “Building an Executable Program” on page 2-11

• “Verifying the Executable Program” on page 2-14

• “Naming and Saving the Configuration Set” on page 2-15

• “Documenting the Project” on page 2-17

2 How to Develop an Application Using Real-Time Workshop® Software

Workflow for Developing Applications Using Real-Time
Workshop Software

The typical workflow for applying the Real-Time Workshop software to the
application development process involves the following steps:

1 Map your application requirements to available configuration options.

2 Adjust configuration options as necessary.

3 Run the Model Advisor tool.

4 If necessary, tune configuration options based on the Model Advisor report.

5 Generate code for your model.

6 Repeat steps 2 to 5, if necessary.

7 Build an executable program image.

8 Verify that the generated program produces results that are equivalent
to those of your model simulation.

9 Save the configuration, and alternative ones with the model.

10 Use Simulink Report Generator to automatically document the project.

The following figure shows these steps in a flow diagram. Sections following
the figure discuss the steps in more detail.

2-2

Workflow for Developing Applications Using Real-Time Workshop® Software

���������	�
�������������
�

�����������
������
����

�����
����������
������

����

����������������

������
������

���������	�
� ���!������

"����#����	�
� ���!������

$������������
���������
������

%�	����
�!����	

���������
���
�������
&�����'

������('

����
����
)
������
���'

%���

*��

$�

*��

$�

$�

*��

2-3

2 How to Develop an Application Using Real-Time Workshop® Software

Mapping Application Requirements to Configuration
Options

The first step in applying the Real-Time Workshop software to the application
development process is to consider how your application requirements,
particularly with respect to debugging, traceability, efficiency, and safety,
map to code generation options available through the Simulink Configuration
Parameters dialog box. The following screen display shows the Real-Time
Workshop pane of the Configuration Parameters dialog box.

Parameters that you set in the various panes of the Configuration Parameters
dialog box affect the behavior of a model in simulation and the code generated
for the model. The Real-Time Workshop software automatically adjusts the
available configuration parameters and their default settings based on your
target selection. For example, the preceding dialog box display shows default
settings for the generic real-time (GRT) target. However, you should become
familiar with the various parameters and be prepared to adjust settings to
optimize a configuration for your application.

As you review the parameters, consider questions such as the following:

• What settings will help you debug your application?

• What is the highest priority for your application — efficiency, traceability,
extra safety precaution, or some other criterion?

• What is the second highest priority?

2-4

Mapping Application Requirements to Configuration Options

• Can the priority at the start of the project differ from the priority required
for the end? What tradeoffs can be made?

Once you have answered these questions, you can either:

• Use the Code Generation Advisor to identify changes to model constructs
and settings that improve the generated code. For more information, see
“Configuring Code Generation Objectives” in the Real-Time Workshop
User’s Guide.

• Review “Recommended Settings Summary”, which summarizes the impact
of each configuration option on efficiency, traceability, safety precautions,
and debugging, and indicates the default (factory) configuration settings for
the GRT target. For additional details, click the links in the Configuration
Parameter column.

Note

• Review the “Recommended Settings Summary” to see the settings the Code
Generation Advisor recommends.

• If you use a specific embedded target, a Stateflow target, or fixed-point
blocks, consider the mapping of many other configuration parameters. For
details, see the documentation specific to your target environment.

2-5

2 How to Develop an Application Using Real-Time Workshop® Software

Adjusting Configuration Settings
Once you have mapped your application requirements to appropriate
configuration parameter settings, adjust the settings accordingly. Using
the Default column in “Mapping Application Requirements to the Solver
Pane”, identify the configuration parameters you need to modify. Then,
open the Configuration Parameters dialog box or Model Explorer and make
the necessary adjustments.

Tutorials in Chapter 3, “Working with the Real-Time Workshop Software”
guide you through exercises that modify configuration parameter settings.
For more information on setting configuration parameters for code generation,
see “Preparing Models for Code Generation”“Building Executables” in the
Real-Time Workshop documentation. For descriptions of parameters specific
to the Real-Time Workshop product, see “Configuration Parameters for
Simulink Models” or “Configuration Parameters for Embedded MATLAB
Coder” in the Real-Time Workshop reference documentation.

Note In addition to using the Configuration Parameters dialog box, you can
use get_param and set_param to individually access most configuration
parameters both interactively and in scripts. The configuration parameters
you can get and set are listed in the “Parameter Reference” in the Real-Time
Workshop documentation.

2-6

Running the Model Advisor

Running the Model Advisor
Before you generate code, it is good practice to run the Model Advisor. Based
on a list of options you select, this tool analyzes your model and its parameter
settings, and generates results that list findings with advice on how to correct
and improve the model and its configuration.

One way of starting the Model Advisor is to select Tools > Model Advisor in
your model window. A new window appears listing specific diagnostics you
can selectively enable or disable. Some examples of the diagnostics follow:

• Identify blocks that generate expensive saturation and rounding code

• Check optimization settings

• Identify questionable software environment specifications

2-7

2 How to Develop an Application Using Real-Time Workshop® Software

Although you can use the Model Advisor to improve model simulation, it
is particularly useful for identifying aspects of your model that limit code
efficiency or impede deployment of production code. The following figure
shows the Model Advisor.

2-8

Running the Model Advisor

For more information on using the Model Advisor, see “Getting Advice
About Optimizing Models for Code Generation” in the Real-Time Workshop
documentation.

2-9

2 How to Develop an Application Using Real-Time Workshop® Software

Generating Code
After fine-tuning your model and its parameter settings, you are ready to
generate code. Typically, the first time through the process of applying
Real-Time Workshop software for an application, you want to generate code
without going on to compile and link it into an executable program. Some
reasons for doing this include the following:

• You want to inspect the generated code. Is the Real-Time Workshop code
generator creating what you expect?

• You need to integrate custom handwritten code.

• You want to experiment with configuration option settings.

You specify code generation only by selecting the Generate code only
check box available on the Real-Time Workshop pane of the Configuration
Parameters dialog box (thus changing the label of the Build button to
Generate code). The Real-Time Workshop code generator responds by
analyzing the block diagram that represents your model, generating C code,
and placing the resulting files in a build directory within your current
working directory.

After generating the code, inspect it. Is it what you expected? If not,
determine what model and configuration changes you need to make, rerun
the Model Advisor, and regenerate the code. When you are satisfied with the
generated code, build an executable program image, as explained in “Building
an Executable Program” on page 2-11.

For details on the Generate code only option, see “Generate code only” in
the Real-Time Workshop documentation.

2-10

Building an Executable Program

Building an Executable Program
When you are satisfied with the code generated for your model, build an
executable program image. If it is currently selected, you need to clear the
Generate code only option on the Real-Time Workshop pane of the
Configuration Parameters dialog box. This changes the label of the Generate
code button back to Build.

One way of initiating a build is to click the Build button. The Real-Time
Workshop code generator

1 Compiles the model — The Real-Time Workshop software analyzes your
block diagram (and any models referenced by Model blocks) and compiles
an intermediate hierarchical representation in a file called model.rtw.

2 Generates C code — The Target Language Compiler reads model.rtw,
translates it to C code, and places the C file in a build directory within
your working directory.

When you click Generate code, as explained in “Generating Code” on page
2-10, processing stops here.

3 Generates a customized makefile — The Real-Time Workshop software
constructs a makefile from the appropriate target makefile template and
writes it in the build directory.

4 Generates an executable program — Instructing your system’s make utility
to use the generated makefile to compile the generated source code, link
object files and libraries, and generate an executable program file called
model (UNIX) or model.exe (Microsoft Windows). The makefile places the
executable image in your working directory.

If you select Create code generation report on the Real-Time
Workshop > Report> pane, a navigable summary of source files is
produced when the model is built. The report files occupy directory html in
the build directory. The report contents vary depending on the target, but
all reports feature links to generated source files.

If the software detects code generation constraints for your model, it issues
warning or error messages.

2-11

2 How to Develop an Application Using Real-Time Workshop® Software

The following figure illustrates the complete process. The box labeled
“Automated build process” highlights portions of the process that the
Real-Time Workshop software executes.

�������+
�����

���������
���
��
�!�����
���

,���-���������
���������

�����
�
��+�����

*���
&�����
�
��+�����

����������

��
���
��
 ��������	���

���	�
� ��
���������

������
�
����

������
�
��+�����

����	
����

�����������	���

���
��
��+�����

����	���

����	����
!������

����������

����	��
����	��
����		�
�������

The M-file specified by the Make command field in the Build process
section of the Real-Time Workshop pane of the Configuration Parameters
dialog box controls an internal portion of the Real-Time Workshop build
process. By default, the name of the M-file command is make_rtw; the
Real-Time Workshop build process invokes this M-file for most targets. Any
options specified in this field are passed into the makefile-based build process.
In some cases, targets customize the make_rtw command. However, the
arguments used by the function must be preserved.

2-12

Building an Executable Program

Although the command may work for a stand-alone model, use of the
make_rtw command at the command line can be error prone. For example, if
you have multiple models open, you need to check whether

• The current subsystem, found by entering gcs in the MATLAB command
window, contains the model you want to build.

• TheMake command specified in the Configuration Parameters dialog box
for the target environment is make_rtw.

• The model includes Model blocks. Models containing Model blocks do not
build by using make_rtw directly.

To build (or generate code for) a model from the MATLAB Command Window,
use one of the following rtwbuild commands, where model is the name of
the model:

rtwbuild model
rtwbuild('model')

2-13

2 How to Develop an Application Using Real-Time Workshop® Software

Verifying the Executable Program
Once you have an executable image, run the image and compare the results to
the results of your model’s simulation. You can do this by

1 Logging output data produced by simulation runs

2 Logging output data produced by executable program runs

3 Comparing the results of the simulation and executable program runs

Does the output match? Are you able to explain any differences? Do you need
to eliminate any differences? At this point, it might be necessary to revisit
and possibly fine-tune your block and configuration parameter settings.

For an example, see “Code Verification” on page 3-27.

2-14

Naming and Saving the Configuration Set

Naming and Saving the Configuration Set
When you close a model, you should save it to preserve your configuration
settings (unless you regard your recent changes as dispensable). If you want
to maintain several alternative configurations for a model (e.g., GRT and
Rapid Simulation targets, inline parameters on/off, different solvers, etc.), you
can set up a configuration set for each set of configuration parameters and
give it an identifying name. You can do this easily in Model Explorer.

To name and save a configuration,

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click the Configuration (active) node under the model name.

The Configuration Parameters dialog box appears in the right pane.

4 In the Configuration Parameters pane, type a name you want to give
the current configuration in the Name field.

5 Click Apply. The name of the active configuration in the Model
Hierarchy pane changes to the name you typed.

6 Save the model.

Adding and Copying Configuration Sets
You can save the model with more than one configuration so that you
can instantly reconfigure it at a later time. To do this, copy the active
configuration to a new one, or add a new one, then modify and name the
new configuration, as follows:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

2-15

2 How to Develop an Application Using Real-Time Workshop® Software

3 To add a new configuration set, while the model is selected in the Model
Hierarchy pane, select Configuration Set from the Add menu, or click
the yellow gear icon on the toolbar:

A new configuration set named Configuration appears in the Model
Hierarchy pane.

4 To copy an existing configuration set, right-click its name in the Model
Hierarchy pane and drag it to the + sign in front of the model name.

A new configuration set with a numeral (e.g., 1) appended to its name
appears lower in the Model Hierarchy pane.

5 If desired, rename the new configuration by right-clicking it, selecting
Properties, and typing the new name in the Name field on the
Configuration Parameters dialog box that appears. Then click the Apply
button.

6 Make the new configuration the active one by right-clicking it in theModel
Hierarchy pane and selecting Activate from the context menu.

The content of the Is Active field in the right pane changes from no to yes.

7 Save the model.

2-16

Documenting the Project

Documenting the Project
Consider documenting the design and implementation details of your project
to facilitate

• Project verification and validation

• Collaboration with other individuals or teams, particularly if dependencies
exist

• Archiving the project for future reference

One way of documenting a Real-Time Workshop code generation project
is to use the Simulink Report Generator software. You can generate a
comprehensive Rich Text Format (RTF), Extensible Markup Language (XML),
or Hypertext Markup Language (HTML) report that includes the following
information:

• Model name and version

• Real-Time Workshop product version

• Date and time the code generator created the code

• List of generated source and header (include) files

• Optimization and Real-Time Workshop target selection and build process
configuration settings

• Mapping of subsystem numbers to subsystem labels

• Listings of generated and custom code for the model

To get started with generating a code generation report, see the demo
rtwdemo_codegenrpt and tutorial “Documenting a Code Generation Project”
on page 3-73. For details on using the Report Generator, see the Simulink
Report Generator User’s Guide.

2-17

2 How to Develop an Application Using Real-Time Workshop® Software

2-18

3

Working with the Real-Time
Workshop Software

This chapter provides hands-on tutorials that help you get started generating
code with the Real-Time Workshop software, as quickly as possible. It
includes the following topics:

• “Demonstration Model: rtwdemo_f14” on page 3-3

• “Building a Generic Real-Time Program” on page 3-4

• “Data Logging” on page 3-18

• “Code Verification” on page 3-27

• “First Look at Generated Code” on page 3-33

• “Working with External Mode Using GRT” on page 3-47

• “Generating Code for a Referenced Model” on page 3-61

• “Documenting a Code Generation Project” on page 3-73

To get the maximum benefit from this book, The MathWorks recommends
that you study and work all the tutorials, in the order presented.

These tutorials assume basic familiarity with the MATLAB and Simulink
products. You should also read Chapter 2, “How to Develop an Application
Using Real-Time Workshop Software”, before proceeding.

The procedures for building, running, and testing your programs are almost
identical in UNIX and PC environments. The discussion notes differences
where applicable.

3 Working with the Real-Time Workshop® Software

Make sure that a MATLAB compatible C compiler is installed on your system
before proceeding with these tutorials. For details on supported compiler
versions, see

http://www.mathworks.com/support/compilers/current_release

3-2

http://www.mathworks.com/support/compilers/current_release/

Demonstration Model: rtwdemo_f14

Demonstration Model: rtwdemo_f14
The first three tutorials use a demonstration Simulink model,
rtwdemo_f14.mdl, from the directory:

matlabroot/toolbox/rtw/rtwdemos/

By default, this directory is on your MATLAB path; matlabroot is the location
of MATLAB on your system. The rtwdemo_f14 model represents a simplified
flight controller for the longitudinal motion of a Grumman Aerospace F-14
aircraft. The figure below shows the top level of this model.

The model simulates the pilot’s stick input with a square wave having a
frequency of 0.5 radians per second and an amplitude of ± 1. The system
outputs are the aircraft angle of attack and the G forces experienced by the
pilot. The input and output signals are visually monitored by Scope blocks.

3-3

3 Working with the Real-Time Workshop® Software

Building a Generic Real-Time Program

In this section...

“Tutorial Overview” on page 3-4

“Working and Build Directories” on page 3-4

“Setting Program Parameters” on page 3-5

“Selecting the Target Configuration” on page 3-7

“Building and Running the Program” on page 3-13

“Contents of the Build Directory” on page 3-15

Tutorial Overview
This tutorial walks through the process of generating C code and building an
executable program from the demonstration model. The resulting stand-alone
program runs on your workstation, independent of external timing and events.

Working and Build Directories
It is convenient to work with a local copy of the rtwdemo_f14 model, stored in
its own directory, f14example. Set up your working directory as follows:

1 In the MATLAB Current Folder browser, navigate to a directory where
you have write access.

2 Create the working directory from the MATLAB command line by typing:

mkdir f14example

3 Make f14example your working directory:

cd f14example

4 Open the rtwdemo_f14 model:

rtwdemo_f14

The model appears in the Simulink window.

3-4

Building a Generic Real-Time Program

5 In the model window, choose File > Save As. Navigate to your working
directory, f14example. Save a copy of the rtwdemo_f14 model as
f14rtw.mdl.

During code generation, the Real-Time Workshop software creates a build
directory within your working directory. The build directory name is
model_target_rtw, derived from the name of the source model and the
chosen target. The build directory stores generated source code and other files
created during the build process. You examine the build directory contents at
the end of this tutorial.

Note When a model contains Model blocks (which enable one Simulink model
to include others), special project directories are created in your working
directory to organize code for referenced models. Project directories exist
alongside of Real-Time Workshop build directories, and are always named
slprj. “Generating Code for a Referenced Model” on page 3-61 describes
navigating project directory structures in Model Explorer.

Setting Program Parameters
To generate code correctly from the f14rtw model, you must change some of
the simulation parameters. In particular, note that generic real-time (GRT)
and most other targets require that the model specify a fixed-step solver.

Note The Real-Time Workshop software can generate code for models using
variable-step solvers for rapid simulation (rsim) and S-function targets only.

To set parameters, use the Model Explorer as follows:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

3-5

3 Working with the Real-Time Workshop® Software

4 Click Solver in the center pane. The Solver pane appears at the right.

5 Enter the following parameter values on the Solver pane (some may
already be set):

• Start time: 0.0

• Stop time: 60

• Type: Fixed-step

• Solver: ode5 (Dormand-Prince)

• Fixed step size (fundamental sample time): 0.1

• Tasking mode for periodic sample times: SingleTasking

The Solver pane with the modified parameter settings is shown below.
Note the tan background color of the controls you just changed. The color
also appears on fields that were set automatically by your choices in other
fields. Use this visual feedback to verify that what you set is what you
intended. When you apply your changes, the background color reverts
to white.

3-6

Building a Generic Real-Time Program

6 Click Apply to register your changes.

7 Save the model. Simulation parameters persist with the model, for use in
future sessions.

Selecting the Target Configuration

Note Some of the steps in this section do not require you to make changes.
They are included to help you familiarize yourself with the Real-Time
Workshop user interface. As you step through the dialog boxes, place the
mouse pointer on any item of interest to see a tooltip describing its function.

To specify the desired target configuration, you choose a system target file, a
template makefile, and a make command.

3-7

3 Working with the Real-Time Workshop® Software

In these tutorials (and in most applications), you do not need to specify these
parameters individually. Here, you use the ready-to-run generic real-time
target (GRT) configuration. The GRT target is designed to build a stand-alone
executable program that runs on your workstation.

To select the GRT target via the Model Explorer:

1 With the f14rtw model open, open Model Explorer by selecting Model
Explorer from the model’s View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

4 Click Real-Time Workshop in the center pane. The Real-Time
Workshop pane appears at the right. This pane has several tabs.

5 Click the General tab to activate the pane that controls target selection.

3-8

Building a Generic Real-Time Program

6 Click the Browse button next to the System target file field. This opens
the System Target File Browser, illustrated below. The browser displays
a list of all currently available target configurations. Your available
configurations may differ. When you select a target configuration, the
Real-Time Workshop software automatically chooses the appropriate
system target file, template makefile, and make command. Their names
appear at the bottom left of the window.

Note The system target file browser lists all system target files found on
the MATLAB path. Using some of these might require additional licensed
products, such as the Real-Time Workshop Embedded Coder product.

3-9

3 Working with the Real-Time Workshop® Software

7 From the list of available configurations, select Generic Real-Time
Target (as shown above) and then click OK.

The Real-Time Workshop pane displays the correct system target
file (grt.tlc), make command (make_rtw), and template makefile
(grt_default_tmf), as shown below:

3-10

Building a Generic Real-Time Program

8 Select the Debug tab of the Real-Time Workshop pane. The options
displayed here control build verbosity and debugging support, and are
common to all target configurations. Make sure that all options are set
to their defaults, as shown below.

3-11

3 Working with the Real-Time Workshop® Software

9 Select the Symbols tab of the Real-Time Workshop pane. The options on
this pane control the look and feel of generated code.

3-12

Building a Generic Real-Time Program

10 Select the Comments tab of the Real-Time Workshop pane. The options
displayed here control the types of comments included in generated code.
Make sure that all options are set to their defaults, as shown below.

11 Make sure that the Generate code only check box at the bottom of the
pane is cleared.

12 Save the model.

Building and Running the Program
The Real-Time Workshop build process generates C code from the model,
and then compiles and links the generated program to create an executable
image. To build and run the program,

3-13

3 Working with the Real-Time Workshop® Software

1 With the f14rtw model open, go to the Model Explorer window. In the
Real-Time Workshop pane, select the General tab, then click the Build
button to start the build process.

A number of messages concerning code generation and compilation appear
in the MATLAB Command Window. The initial message is

Starting Real-Time Workshop build procedure for model: f14rtw

The contents of many of the succeeding messages depends on your compiler
and operating system. The final message is

Successful completion of Real-Time Workshop build procedure
for model: f14rtw

The working directory now contains an executable, f14rtw.exe (Microsoft
Windows platforms) or f14rtw (UNIX platforms). In addition, the
Real-Time Workshop build process has created a project directory, slprj,
and a build directory, f14rtw_grt_rtw, in your working directory.

Note The Real-Time Workshop build process displays a code generation
report after generating the code for the f14rtw model. The tutorial “First
Look at Generated Code” on page 3-33 provides more information about
how to create and use a code generation report.

2 To observe the contents of the working directory after the build, type the
dir command from the MATLAB Command Window.

dir

. f14rtw.exe f14rtw_grt_rtw

.. f14rtw.mdl slprj

3-14

Building a Generic Real-Time Program

3 To run the executable from the Command Window, type

!f14rtw

The ! character passes the command that follows it to the operating system,
which runs the stand-alone f14rtw program.

The program produces one line of output in the Command Window:

starting the model

No data is output.

4 Finally, to see the files created in the build directory, type

dir f14rtw_grt_rtw

The exact list of files produced varies among MATLAB platforms and
versions. Here is a sample list from a Windows platform.

. grt_main.obj rt_nonfinite.h

.. html rt_nonfinite.obj
buildInfo.mat modelsources.txt rt_rand.c
defines.txt ode5.obj rt_rand.h
f14rtw.bat rtGetInf.c rt_rand.obj
f14rtw.c rtGetInf.h rt_sim.obj
f14rtw.h rtGetInf.obj rtmodel.h
f14rtw.mk rtGetNaN.c rtw_proj.tmw
f14rtw.obj rtGetNaN.h rtwtypes.h
f14rtw_private.h rtGetNaN.obj rtwtypeschksum.mat
f14rtw_ref.rsp rt_logging.obj
f14rtw_types.h rt_nonfinite.c

Contents of the Build Directory
The build process creates a build directory and names it model_target_rtw,
where model is the name of the source model and target is the target selected
for the model. In this example, the build directory is named f14rtw_grt_rtw.

The build directory includes the following generated files.

3-15

3 Working with the Real-Time Workshop® Software

Note The code generation report you created for the f14rtw model in the
previous section displays a link for each file listed below, which you can click
to explore the file contents.

File Description

f14rtw.c Standalone C code that implements the model

rt_nonfinite.c
rtGetInf.c
rtGetNaN.c

Functions to initialize nonfinite types (Inf,
NaN, and -Inf)

rt_rand.c Random functions, included only if needed by
the application

f14rtw.h An include header file containing definitions of
parameters and state variables

f14rtw_private.h Header file containing common include
definitions

f14rtw_types.h Forward declarations of data types used in the
code

rt_nonfinite.h
rtGetInf.h
rtGetNaN.h

Provides support for nonfinite numbers in the
generated code, dynamically generates Inf,
NaN, and -Inf as needed

rt_rand.h Imported declarations for random functions,
included only if needed by the application

rtmodel.h Master header file for including generated code
in the static main program (its name never
changes, and it simply includes f14rtw.h)

rtwtypes.h Static include file for Simulink simstruct data
types; some embedded targets tailor this file to
reduce overhead, but GRT does not

The build directory contains other files used in the build process, most of
which you can disregard for the present:

• f14rtw.mk— Makefile generated from a template for the GRT target

3-16

Building a Generic Real-Time Program

• Object (.obj) files

• f14rtw.bat — Batch control file

• rtw_proj.tmw — Marker file

• buildInfo.mat — Build information for relocating generated code to
another development environment

• defines.txt— Parameter definitions for accessing the application

• f14rtw_ref.rsp — Data to include as command-line arguments to mex
(Windows systems only)

The build directory also contains a subdirectory, html, which contains the
files that make up the code generation report. For more information about
the code generation report, see the tutorial “First Look at Generated Code”
on page 3-33.

3-17

3 Working with the Real-Time Workshop® Software

Data Logging

In this section...

“Tutorial Overview” on page 3-18

“Data Logging During Simulation” on page 3-19

“Data Logging from Generated Code” on page 3-22

Tutorial Overview
Real-Time Workshop MAT-file data logging facility enables a generated
program to save system states, outputs, and simulation time at each model
execution time step. The data is written to a MAT-file, named (by default)
model.mat, where model is the name of your model. In this tutorial, data
generated by the model f14rtw.mdl is logged to the file f14rtw.mat. Refer
to “Building a Generic Real-Time Program” on page 3-4 for instructions on
setting up f14rtw.mdl in a working directory if you have not done so already.

To configure data logging, click Data Import/Export in the center pane
of the Model Explorer. The process is the same as configuring a Simulink
model to save output to the MATLAB workspace. For each workspace return
variable you define and enable, the Real-Time Workshop software defines
a parallel MAT-file variable. For example, if you save simulation time to
the variable tout, your generated program logs the same data to a variable
named rt_tout. You can change the prefix rt_ to a suffix (_rt), or eliminate
it entirely. You do this by selecting Real-Time Workshop in the center pane
of the Model Explorer, then clicking the Interface tab.

Note Simulink lets you log signal data from anywhere in a model via the Log
signal data option in the Signal Properties dialog box (accessed via context
menu by right-clicking signal lines). The Real-Time Workshop software
does not use this method of signal logging in generated code. To log signals
in generated code, you must either use the Data Import/Export options
described below or include To File or To Workspace blocks in your model.

In this tutorial, you modify the f14rtw model so that the generated program
saves the simulation time and system outputs to the file f14rtw.mat. Then

3-18

Data Logging

you load the data into the MATLAB workspace and plot simulation time
against one of the outputs. The f14rtw model should be open and configured
as it was at the end of the previous tutorial.

Data Logging During Simulation
To use the data logging feature:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

4 Click Data Import/Export in the center pane. The Data Import/Export
pane appears at the right. Its Save to workspace section lets you specify
which outport data is to be saved to the workspace and what variable
names to use for it.

5 Select the Time option. This tells Simulink to save time step data during
simulation as a variable named tout. You can enter a different name to
distinguish different simulation runs (for example using different step
sizes), but take the default for this tutorial. Selecting Time enables the
Real-Time Workshop code generator to create code that logs the simulation
time to a MAT-file.

6 Select the Output option. This tells Simulink to save output signal data
during simulation as a variable named yout. Selecting Output enables
the Real-Time Workshop code generator to create code that logs the root
Output blocks (Angle of Attack and Pilot G Force) to a MAT-file.

Note The sort order of the yout array is based on the port number of the
Outport blocks, starting with 1. Angle of Attack and Pilot G Force are
logged to yout(:,1) and yout(:,2), respectively.

3-19

3 Working with the Real-Time Workshop® Software

7 If any other options are enabled, clear them. Set Decimation to 1 and
Format to Array. The figure below shows the dialog.

8 Click Apply to register your changes.

9 Save the model.

3-20

Data Logging

10 Open the Pilot G Force Scope block of the model, then run the model by
choosing Simulation > Start in the model window. The resulting Pilot G
Force scope display is shown below.

11 Verify that the simulation time and outputs have been saved to the
MATLAB workspace in MAT-files. At the MATLAB prompt, type:

whos *out

Simulink displays:

Name Size Bytes Class Attributes

tout 601x1 4808 double
yout 601x2 9616 double

3-21

3 Working with the Real-Time Workshop® Software

12 Verify that Pilot G Force was correctly logged by plotting simulation time
versus that variable. At the MATLAB prompt, type:

plot(tout,yout(:,2))

The resulting plot is shown below.

Data Logging from Generated Code
In the second part of this tutorial, you build and run a Real-Time Workshop
executable of the f14rtw model that outputs a MAT-file containing the
simulation time and outputs you previously examined. Even though you have
already generated code for the f14rtw model, you must now regenerate that
code because you have changed the model by enabling data logging. The
steps below explain this procedure.

To avoid overwriting workspace data with data from simulation runs, the
Real-Time Workshop code generator modifies identifiers for variables logged
by Simulink. You can control these modifications from theModel Explorer:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

3-22

Data Logging

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

4 In the center pane, click Real-Time Workshop. The Real-Time
Workshop pane appears to the right.

5 Click the Interface tab.

6 Set MAT-file variable name modifier to _rt. This adds the suffix _rt
to each variable that you selected to be logged in the first part of this
tutorial (tout, yout).

3-23

3 Working with the Real-Time Workshop® Software

7 Clear the Generate code only check box, if it is currently selected. The
pane should look like this:

8 Click Apply to register your changes.

9 Save the model.

10 To generate code and build an executable, click the Build button.

11 When the build concludes, run the executable with the command:

3-24

Data Logging

!f14rtw

12 The program now produces two message lines, indicating that the MAT-file
has been written.

** starting the model **
** created f14rtw.mat **

13 Load the MAT-file data created by the executable and look at the workspace
variables from simulation and the generated program by typing:

load f14rtw.mat
whos tout* yout*

Simulink displays:

Name Size Bytes Class Attribute

tout 601x1 4808 double
tout_rt 601x1 4808 double
yout 601x2 9616 double
yout_rt 601x2 9616 double

Note that all arrays have the same number of elements.

3-25

3 Working with the Real-Time Workshop® Software

14 Observe that the variables tout_rt (time) and yout_rt (Pilot G Force
and Angle of Attack) have been loaded from the file. Plot Pilot G Force
as a function of time.

plot(tout_rt,yout_rt(:,2))

The resulting plot is identical to the plot you produced in step 10 of the
previous part of this tutorial:

3-26

Code Verification

Code Verification

In this section...

“Tutorial Overview” on page 3-27

“Logging Signals via Scope Blocks” on page 3-27

“Logging Simulation Data” on page 3-29

“Logging Data from the Generated Program” on page 3-29

“Comparing Numerical Results of the Simulation and the Generated
Program” on page 3-31

Tutorial Overview
In this tutorial, you verify the answers computed by code generated from
the f14rtw model. You do this by capturing two sets of output data and
comparing the sets. You obtain one set by running the Simulink model, and
the other set by executing the Real-Time Workshop generated code.

Note To obtain a valid comparison between outputs of the model and the
generated program, you must use the same Solver options and the same
Step size for both the Simulink run and the Real-Time Workshop build
process, and the model must be configured to save simulation time, as shown
in the preceding tutorial.

Logging Signals via Scope Blocks
This example uses Scope blocks (rather than Outport blocks) to log output
data. The f14rtw model should be configured as it was at the end of the
previous tutorial, “Data Logging” on page 3-18.

To configure the Scope blocks to log data,

1 Save the model if any unsaved changes exist.

2 Clear the MATLAB workspace to eliminate the results of previous
simulation runs. At the MATLAB prompt, type:

3-27

3 Working with the Real-Time Workshop® Software

clear

The clear operation clears not only variables created during previous
simulations, but all workspace variables, some of which are standard
variables that the f14rtw model requires.

3 Reload the model so that the standard workspace variables are redeclared
and initialized:

a Close the model by clicking its window’s Close box.

b At the MATLAB prompt, type:

f14rtw

The model reopens, which declares and initializes the standard
workspace variables.

4 Open the Stick Input Scope block and click the Parameters button (the
second button from the left) on the toolbar of the Scope window. The Stick
Input Parameters dialog box opens.

5 Click the Data History tab of the Stick Input Parameters dialog box.

6 Select the Save data to workspace option and change the Variable
name to Stick_input. The dialog box appears as follows:

7 Click OK.

The Stick Input parameters now specify that the Stick Input signal to the
Scope block will be logged to the array Stick_input during simulation.

3-28

Code Verification

The generated code will log the same signal data to the MAT-file variable
rt_Stick_input during a run of the executable program.

8 Configure the Pilot G Force and Angle of Attack Scope blocks similarly,
using the variable names Pilot_G_force and Angle_of_attack.

9 Save the model.

Logging Simulation Data
The next step is to run the simulation and log the signal data from the Scope
blocks:

1 Open the Stick Input, Pilot G Force, and Angle of Attack Scope blocks.

2 Run the model. The three Scope plots look like this:

3 Use the whos command to show that the array variables Stick_input,
Pilot_G_force, and Angle_of_attack have been saved to the workspace.

4 Plot one or more of the logged variables against simulation time. For
example,

plot(tout, Stick_input(:,2))

Logging Data from the Generated Program
Because you have modified the model, you must rebuild and run the f14rtw
executable to obtain a valid data file:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

3-29

3 Working with the Real-Time Workshop® Software

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

4 Select Real-Time Workshop on the center pane of theModel Explorer,
and click the Interface tab. The Interface pane appears.

5 Set the MAT-file variable name modifier menu to rt_. This prefixes
rt_ to each variable that you selected to be logged in the first part of this
tutorial.

6 Click Apply.

7 Save the model.

8 Generate code and build an executable by clicking the Build button. Status
messages in the MATLAB Command Window track the build process.

9 When the build finishes, run the stand-alone program from MATLAB.

!f14rtw

The executing program writes the following messages to the MATLAB
Command Window.

** starting the model **
** created f14rtw.mat **

10 Load the data file f14rtw.mat and observe the workspace variables.

>> load f14rtw

>> whos rt*

Name Size Bytes Class Attributes

rt_Angle_of_attack 601x2 9616 double

rt_Pilot_G_force 601x2 9616 double

rt_Stick_input 601x2 9616 double

rt_tout 601x1 4808 double

rt_yout 601x2 9616 double

3-30

Code Verification

11 Use MATLAB to plot three workspace variables created by the executing
program as a function of time.

figure('Name','Stick_input')
plot(rt_tout,rt_Stick_input(:,2))
figure('Name','Pilot_G_force')
plot(rt_tout,rt_Pilot_G_force(:,2))
figure('Name','Angle_of_attack')
plot(rt_tout,rt_Angle_of_attack(:,2))

Your Simulink simulations and the generated code have apparently
produced nearly identical output. The next section shows how to quantify
this similarity.

Comparing Numerical Results of the Simulation and
the Generated Program
You have now obtained data from a Simulink run of the model and from a run
of the program generated from the model. It is a simple matter to compare the
f14rtw model output to the Real-Time Workshop results. Your comparison
results may differ from those shown below.

To compare Angle_of_attack (simulation output) to rt_Angle_of_attack
(generated program output), type:

max(abs(rt_Angle_of_attack-Angle_of_attack))

MATLAB prints:

ans =
1.0e-015 *

0 0.3331

3-31

3 Working with the Real-Time Workshop® Software

Similarly, the comparison of Pilot_G_force (simulation output) to
rt_Pilot_G_force (generated program output) is:

max(abs(rt_Pilot_G_force-Pilot_G_force))
1.0e-013 *

0 0.4974

Overall agreement is within 10-13. The means of residuals are an order of
magnitude smaller. This slight error can be caused by many factors, including

• Different compiler optimizations

• Statement ordering

• Runtime libraries

For example, a function call such as sin(2.0) might return a slightly
different value depending on which C library you are using. Such variations
can also cause differences between your results and those shown above.

3-32

First Look at Generated Code

First Look at Generated Code

In this section...

“Tutorial Overview” on page 3-33

“Setting Up the Model” on page 3-33

“Generating Code Without Buffer Optimization” on page 3-35

“Generating Code with Buffer Optimization” on page 3-39

“Further Optimization: Expression Folding” on page 3-41

“HTML Code Generation Reports” on page 3-44

Tutorial Overview
In this tutorial, you examine code generated from a simple model to observe
the effects of some of the many Real-Time Workshop code optimization
features.

Note You can view the code generated from this example using the MATLAB
editor. You can also view the code in the MATLAB Help browser if you enable
the Create HTML report option before generating code. See the following
section, “HTML Code Generation Reports” on page 3-44, for an introduction
to using the HTML report feature.

The source model, example.mdl, is shown below.

Setting Up the Model
First, create the model from Simulink library blocks, and set up basic
Simulink and Real-Time Workshop parameters as follows:

3-33

3 Working with the Real-Time Workshop® Software

1 Create a directory, example_codegen, and make it your working directory:

!mkdir example_codegen
cd example_codegen

2 Create a new model and save it as example.mdl.

3 Add Sine Wave, Gain, and Out1 blocks to your model and connect them as
shown in the preceding diagram. Label the signals as shown.

4 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

5 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

6 Click Configuration (Active) in the left pane.

7 Select Solver in the center pane. The Solver pane appears at the right.

8 In the Solver Options pane:

a Select Fixed-step in the Type field.

b Select Discrete (no continuous states) in the Solver field.

c Specify 0.1 in the Fixed-step size field. (Otherwise, the Real-Time
Workshop code generator posts a warning and supplies a default value
when you generate code.)

9 Click Apply.

10 Click Data Import/Export in the center pane and make sure all check
boxes in the right pane are cleared. Click Apply if you made any changes.

11 Select Real-Time Workshop in the center pane. Under Target Selection
in the right pane, select the default generic real-time (GRT) target grt.tlc.

12 Select Generate code only at the bottom of the right pane. This option
causes the Real-Time Workshop software to generate code and a make file,
then stop at that point, rather than proceeding to invoke make to compile
and link the code. Note that the label on the Build button changes to
Generate code.

3-34

First Look at Generated Code

13 Click Apply.

14 Save the model.

Generating Code Without Buffer Optimization
With buffer optimizations Real-Time Workshop software generates code that
reduces memory consumption and execution time. In this tutorial, you disable
the buffer optimizations to see what the nonoptimized generated code looks
like:

1 Select Optimization in the center pane. The Optimization pane appears
at the right. Clear the Signal storage reuse option, as shown below.
Change any other attributes as needed to match the figure.

Note Clearing the Signal storage reuse option disables the following
options:

• Enable local block outputs

• Reuse block outputs

• Eliminate superfluous local variables (Expression folding)

• Minimize data copies between local and global variables

3-35

3 Working with the Real-Time Workshop® Software

2 Click Apply.

3 Select Real-Time Workshop > Report in the center pane. The Report
pane appears at the right.

4 Select the Create code generation report and Launch report
automatically check boxes. Selecting these check boxes makes the code
generation report display after the build process completes.

5 Select Real-Time Workshop in the center pane, and click Generate
code on the right.

3-36

First Look at Generated Code

6 Because you selected the Generate code only option, the Real-Time
Workshop build process does not invoke your make utility. The code
generation process ends with this message:

Successful completion of Real-Time Workshop
build procedure for model: example

7 The generated code is in the build directory, example_grt_rtw. The file
example_grt_rtw/example.c contains the output computation for the
model. You can view this file in the code generation report by clicking
the example.c link in the left pane.

8 In example.c, find the function example_output near the top of the file.

The generated C code consists of procedures that implement the algorithms
defined by your Simulink block diagram. The execution engine calls the
procedures in proper succession as time moves forward. The modules that
implement the execution engine and other capabilities are referred to
collectively as the run-time interface modules. See the Real-Time Workshop
User’s Guide for a complete discussion of how the Real-Time Workshop
software interfaces and executes application, system-dependent, and
system-independent modules, in each of the two styles of generated code.

In code generated for example, the generated example_output function
implements the actual algorithm for multiplying a sine wave by a gain.
The example_output function computes the model’s block outputs. The
run-time interface must call example_output at every time step. With
buffer optimizations turned off, example_output assigns unique buffers
to each block output. These buffers (rtB.sin_out, rtB.gain_out) are
members of a global block I/O data structure, called in this code example_B
and declared as follows:

/* Block signals (auto storage) */
BlockIO_example example_B;

The data type BlockIO_example is defined in example.h as follows:

/* Block signals (auto storage) */
extern BlockIO_example example_B;

3-37

3 Working with the Real-Time Workshop® Software

The output code accesses fields of this global structure, as shown below:

/* Model output function */

static void example_output(int_T tid)

{

/* Sin: '<Root>/Sine Wave' */

example_B.sin_out = sin(example_P.SineWave_Freq * example_M->Timing.t[0] +

example_P.SineWave_Phase) * example_P.SineWave_Amp + example_P.SineWave_Bias;

/* Gain: '<Root>/Gain' */

example_B.gain_out = example_P.Gain_Gain * example_B.sin_out;

/* Outport: '<Root>/Out1' */

example_Y.Out1 = example_B.gain_out;

/* tid is required for a uniform function interface.

* Argument tid is not used in the function. */

UNUSED_PARAMETER(tid);

}

9 In GRT targets such as this, the function example_output is called
by a wrapper function, MdlOutputs. In example.c, find the function
MdlOutputs near the end. It looks like this:

void MdlOutputs(int_T tid)
{

example_output(tid);
}

Note In previous releases, MdlOutputs was the actual output function for
code generated by all GRT-configured models. It is now implemented as a
wrapper function to provide greater compatibility among different target
configurations.

3-38

First Look at Generated Code

Generating Code with Buffer Optimization
With buffer optimizations, Real-Time Workshop software generates code that
reduces memory consumption and execution time. In this tutorial, you turn
buffer optimizations on and observe how they improve the code. Enable signal
buffer optimizations and regenerate the code as follows:

1 Change your current working directory to example_codegen if you have
not already done so.

2 Select Optimization in the center pane. The Optimization pane appears
at the right. Select the Signal storage reuse option.

3 Note that the following parameters become enabled in the Code
generation section:

• Enable local block outputs

• Reuse block outputs

• Eliminate superfluous local variables (Expression folding)

• Minimize data copies between local and global variables

3-39

3 Working with the Real-Time Workshop® Software

Make sure that Enable local block outputs, Reuse block outputs,
and Minimize data copies between local and global variables are
selected, and that Eliminate superfluous local variables (Expression
folding) is cleared, as shown below.

You will observe the effects of expression folding later in this tutorial. Not
performing expression folding allows you to see the effects of the buffer
optimizations.

4 Click Apply to apply the new settings.

3-40

First Look at Generated Code

5 Select Real-Time Workshop in the center pane, and click Generate
code on the right.

As before, the Real-Time Workshop software generates code in the
example_grt_rtw directory. The previously generated code is overwritten.

6 View example.c and examine the example_output function.

With buffer optimizations enabled, the code in example_output reuses the
example_Y.Out1 global buffer.

/* Model output function */

static void example_output(int_T tid)

{

/* Sin: '<Root>/Sine Wave' */

example_Y.Out1 = sin(example_P.SineWave_Freq * example_M->Timing.t[0] +

example_P.SineWave_Phase) * example_P.SineWave_Amp +

example_P.SineWave_Bias;

/* Gain: '<Root>/Gain' */

example_Y.Out1 = example_P.Gain_Gain * example_Y.Out1;

/* tid is required for a uniform function interface.

* Argument tid is not used in the function. */

UNUSED_PARAMETER(tid);

}

This code is more efficient in terms of memory usage. The efficiency
improvement gained by selecting Enable local block outputs, Reuse block
outputs, andMinimize data copies between local and global variables
would be more significant in a large model with many signals.

Further Optimization: Expression Folding
As a final optimization, you turn on expression folding, a code optimization
technique that minimizes the computation of intermediate results and the
use of temporary buffers or variables.

Enable expression folding and regenerate the code as follows:

3-41

3 Working with the Real-Time Workshop® Software

1 Change your current working directory to example_codegen if you have
not already done so.

2 Select Optimization in the center pane. The Optimization pane appears.

3 Select the Eliminate superfluous local variables (Expression
folding) option.

4 Click Apply.

3-42

First Look at Generated Code

5 Select Real-Time Workshop in the center pane, and click Generate
code on the right.

The Real-Time Workshop software generates code as before.

6 View example.c and examine the function example_output.

In the previous examples, the Gain block computation was computed in a
separate code statement and the result was stored in a temporary location
before the final output computation.

With Eliminate superfluous local variables (Expression folding)
selected, there is a subtle but significant difference in the generated code:
the gain computation is incorporated (or folded) directly into the Outport
computation, eliminating the temporary location and separate code statement.
This computation is on the last line of the example_output function.

/* Model output function */

static void example_output(int_T tid)

{

/* Outport: '<Root>/Out1' incorporates:

* Gain: '<Root>/Gain'

* Sin: '<Root>/Sine Wave'

*/

example_Y.Out1 = (sin(example_P.SineWave_Freq * example_M->Timing.t[0] +

example_P.SineWave_Phase) * example_P.SineWave_Amp +

example_P.SineWave_Bias) * example_P.Gain_Gain;

/* tid is required for a uniform function interface.

* Argument tid is not used in the function. */

UNUSED_PARAMETER(tid);

}

In many cases, expression folding can incorporate entire model computations
into a single, highly optimized line of code. Expression folding is turned on by
default. Using this option will improve the efficiency of generated code.

3-43

3 Working with the Real-Time Workshop® Software

HTML Code Generation Reports
When the Create code generation report check box on the Real-Time
Workshop > Report pane is selected, a navigable summary of source files is
produced when the model is built. See the figure below.

Selecting this option causes the Real-Time Workshop software to produce
an HTML file for each generated source file, plus a summary and an index
file, in a directory named html within the build directory. If the Launch
report automatically option (which is enabled by selecting Create code
generation report) is also selected, the HTML summary and index are
automatically displayed.

In the HTML report, you can click links in the report to inspect source and
include files, and view relevant documentation. In these reports,

• Global variable instances are hyperlinked to their definitions.

• Block header comments in source files are hyperlinked back to the model;
clicking one of these causes the block that generated that section of code
to be highlighted (this feature requires a Real-Time Workshop Embedded
Coder license and the ERT target).

3-44

First Look at Generated Code

An HTML report for the example.mdl GRT target is shown below.

One useful feature of HTML reports is the link on the Summary page
identifying Configuration Settings at the Time of Code Generation. Clicking
this opens a read-only Configuration Parameters dialog box through which
you can navigate to identify the settings of every option in place at the time
that the HTML report was generated.

You can refer to HTML reports at any time. To review an existing HTML
report after you have closed its window, use any HTML browser to open the
file html/model_codgen_rpt.html within your build directory.

Note The contents of HTML reports for different target types vary, and
reports for models with subsystems feature additional information. You
can also view HTML-formatted files and text files for generated code and
model reference targets withinModel Explorer. See “Generating Code for a
Referenced Model” on page 3-61 for more information.

3-45

3 Working with the Real-Time Workshop® Software

For further information on configuring and optimizing generated code, consult
these sections of the Real-Time Workshop User’s Guide documentation:

• “Building Executables” contains overviews of controlling optimizations
and other code generation options.

• “Optimizing Generated Code” has additional details on signal reuse,
expression folding, and other code optimization techniques.

• “Architecture Considerations” has details on the structure and execution
of model.c files.

3-46

Working with External Mode Using GRT

Working with External Mode Using GRT

In this section...

“Tutorial Overview” on page 3-47

“Setting Up the Model” on page 3-48

“Building the Target Executable” on page 3-50

“Running the External Mode Target Program” on page 3-54

“Tuning Parameters” on page 3-59

Tutorial Overview
This section provides step-by-step instructions for getting started with
external mode, a very useful environment for rapid prototyping. The tutorial
consists of four parts, each of which depends on completion of the preceding
ones, in order. The four parts correspond to the steps that you follow in
simulating, building, and tuning an actual real-time application:

1 Set up the model.

2 Build the target executable.

3 Run the external mode target program.

4 Tune parameters.

The example presented uses the generic real-time target, and does not require
any hardware other than the computer on which you run the Simulink and
Real-Time Workshop software. The generated executable in this example
runs on the host computer in a separate process from MATLAB and Simulink.

The procedures for building, running, and testing your programs are almost
identical in UNIX and PC environments. The discussion notes differences
where applicable.

For a more thorough description of external mode, including a discussion of
all the options available, see “Using the External Mode User Interface” in the
Real-Time Workshop documentation.

3-47

3 Working with the Real-Time Workshop® Software

Setting Up the Model
In this part of the tutorial, you create a simple model, extmode_example, and
a directory called ext_mode_example to store the model and the generated
executable:

1 Create the directory from the MATLAB command line by typing

mkdir ext_mode_example

2 Make ext_mode_example your working directory:

cd ext_mode_example

3 Create a model in Simulink with a Sine Wave block for the input signal,
two Gain blocks in parallel, and two Scope blocks. The model is shown
below. Be sure to label the Gain and Scope blocks as shown, so that
subsequent steps will be clear to you.

4 Define and assign two variables A and B in the MATLAB workspace as
follows:

A = 2; B = 3;

3-48

Working with External Mode Using GRT

5 Open Gain block A and set its Gain parameter to the variable A.

6 Similarly, open Gain block B and set its Gain parameter to the variable B.

When the target program is built and connected to Simulink in external
mode, you can download new gain values to the executing target program
by assigning new values to workspace variables A and B, or by editing
the values in the block parameters dialog. You explore this in “Tuning
Parameters” on page 3-59.

7 Verify correct operation of the model. Open the Scope blocks and run the
model. When A = 2 and B = 3, the output looks like this.

8 From the File menu, choose Save As. Save the model as
extmode_example.mdl.

3-49

3 Working with the Real-Time Workshop® Software

Building the Target Executable
In this section, you set up the model and code generation parameters required
for an external mode compatible target program. Then you generate code and
build the target executable:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

4 Select Solver in the center pane. The Solver pane appears at the right.

5 In the Solver Options pane:

a Select Fixed-step in the Type field.

b Select Discrete (no continuous states) in the Solver field.

c Specify 0.1 in the Fixed-step size field. (Otherwise, the Real-Time
Workshop build process posts a warning and supplies a value when you
generate code.)

3-50

Working with External Mode Using GRT

6 Click Apply. The dialog box appears below. Note that after you click
Apply, the controls you changed again have a white background color.

7 Click Data Import/Export in the center pane, and clear the Time and
Output check boxes. In this tutorial, data is not logged to the workspace or
to a MAT-file. Click Apply.

8 Click Optimization in the center pane. Make sure that the Inline
parameters option is not selected. Although external mode supports
inlined parameters, you will not explore them in this tutorial. Click Apply
if you have made any changes.

9 Click Real-Time Workshop in the center pane. By default, the generic
real-time (GRT) target is selected on the Real-Time Workshop pane.
Select the Interface tab. The Interface pane appears at the right.

10 In the Interface pane, select External mode from the Interface
pull-down menu in the Data exchange section. This enables generation

3-51

3 Working with the Real-Time Workshop® Software

of external mode support code and reveals two more sections of controls:
Host/Target interface and Memory management.

11 Set the Transport layer pull-down menu in the Host/Target interface
section to tcpip. The pane now looks like this:

External mode supports communication via TCP/IP, serial, and custom
transport protocols. The MEX-file name field specifies the name of a
MEX-file that implements host and target communications on the host
side. The default for TCP/IP is ext_comm, a MEX-file provided with the
Real-Time Workshop software. You can override this default by supplying
appropriate files. See in the Real-Time Workshop documentation for details
if you need to support other transport layers.

3-52

Working with External Mode Using GRT

The MEX-file arguments field lets you specify arguments, such as a
TCP/IP server port number, to be passed to the external interface program.
Note that these arguments are specific to the external interface you are
using. For information on setting these arguments, see “MEX-File Optional
Arguments for TCP/IP Transport” and “MEX-File Optional Arguments for
Serial Transport” in the Real-Time Workshop documentation.

This tutorial uses the default arguments. Leave theMEX-file arguments
field blank.

12 Click Apply to save the Interface settings.

13 Save the model.

14 Click Real-Time Workshop in the center pane of the Model Explorer.
On the right, make sure that Generate code only is cleared, then click
the Build button to generate code and create the target program. The
content of subsequent messages depends on your compiler and operating
system. The final message is

Successful completion of Real-Time Workshop
build procedure for model: extmode_example

In the next section, you will run the extmode_example executable and use
Simulink as an interactive front end to the running target program.

3-53

3 Working with the Real-Time Workshop® Software

Running the External Mode Target Program
The target executable, extmode_example, is now in your working directory.
In this section, you run the target program and establish communication
between Simulink and the target.

Note An external-mode program like extmode_example is a host-based
executable. Its execution is not tied to RTOS or a periodic timer interrupt, and
it does not run in real time. The program just runs as fast as possible, and
the time units it counts off are simulated time units that do not correspond to
time in the world outside the program.

The External Signal & Triggering dialog box (accessed via the External
Mode Control Panel) displays a list of all the blocks in your model that
support external mode signal monitoring and logging. The dialog box also lets
you configure the signals that are viewed and how they are acquired and
displayed. You can use it to reconfigure signals while the target program runs.

In this tutorial, you observe and use the default settings of the External
Signal & Triggering dialog box.

3-54

Working with External Mode Using GRT

1 From the Tools menu of the block diagram, select External Mode
Control Panel, which lets you configure signal monitoring and data
archiving. It also lets you connect to the target program and start and
stop execution of the model code.

The top three buttons are for use after the target program has started. The
two lower buttons open separate dialog boxes:

• The Signal & triggering button opens the External Signal &
Triggering dialog box. This dialog box lets you select the signals that
are collected from the target system and viewed in external mode. It also
lets you select a signal that triggers uploading of data when certain
signal conditions are met, and define the triggering conditions.

• The Data archiving button opens the External Data Archiving
dialog box. Data archiving lets you save data sets generated by the target
program for future analysis. This example does not use data archiving.
See “Data Archiving” in the Real-Time Workshop documentation for
more information.

3-55

3 Working with the Real-Time Workshop® Software

2 In the External Mode Control Panel, click the Signal & Triggering
button. The External Signal & Triggering dialog box opens. The
default configuration of the External Signal & Triggering dialog box is
designed to ensure that all signals are selected for monitoring. The default
configuration also ensures that signal monitoring will begin as soon as the
host and target programs have connected. The figure below shows the
default configuration for extmode_example.

3-56

Working with External Mode Using GRT

3 Make sure that the External Signal & Triggering dialog box is set to
the defaults as shown:

• Select all check box is selected. All signals in the Signal selection list
are marked with an X in the Block column.

• Trigger Source: manual

• Trigger Mode: normal

• Duration: 1000

• Delay: 0

• Arm when connecting to target: selected

Click Close, and then close the External Mode Control Panel.

For information on the options mentioned above, see “External Signal
Uploading and Triggering” in the Real-Time Workshop documentation.

4 To run the target program, you must open a command prompt window
(on UNIX systems, an Xterm window). At the command prompt, change
to the ext_mode_example directory that you created in step 1. The target
program is in this directory.

cd ext_mode_example

Next, type the following command:

extmode_example -tf inf -w

and press Return.

Note On Microsoft Windows platforms, you can also use the “bang”
command (!) in the MATLAB Command Window (note that the trailing
ampersand is required): !extmode_example -tf inf -w &

The target program begins execution. Note that the target program is in a
wait state, so no activity occurs in the MATLAB Command Window.

3-57

3 Working with the Real-Time Workshop® Software

The -tf switch overrides the stop time set for the model in Simulink. The
inf value directs the model to run indefinitely. The model code runs until
the target program receives a stop message from Simulink.

The -w switch instructs the target program to enter a wait state until it
receives a Start real-time code message from the host. This switch is
required if you want to view data from time step 0 of the target program
execution, or if you want to modify parameters before the target program
begins execution of model code.

5 Open Scope blocks A and B. At this point, no signals are visible on the
scopes. When you connect Simulink to the target program and begin model
execution, the signals generated by the target program will be visible on
the scope displays.

6 The model itself must be in external mode before communication between
the model and the target program can begin. To enable external mode,
select External from the simulation mode pull-down menu located on the
right side of the toolbar of the Simulink window. Alternatively, you can
select External from the Simulation menu.

7 Reopen the External Mode Control Panel (found in the Tools menu)
and click Connect. This initiates a handshake between Simulink and the
target program. When Simulink and the target are connected, the Start
Real-Time Code button becomes enabled, and the label of the Connect
button changes to Disconnect.

3-58

Working with External Mode Using GRT

8 Click the Start Real-Time Code button. The outputs of Gain blocks A
and B are displayed on the two scopes in your model. With A = 2 and
B = 3, the output looks like this:

Having established communication between Simulink and the running target
program, you can tune block parameters in Simulink and observe the effects
the parameter changes have on the target program. You do this in the next
section.

Tuning Parameters
You can change the gain factor of either Gain block by assigning a new value
to the variable A or B in the MATLAB workspace. When you change block
parameter values in the workspace during a simulation, you must explicitly
update the block diagram with these changes. When the block diagram is
updated, the new values are downloaded to the target program.

To tune the variables A and B,

1 In the MATLAB Command Window, assign new values to both variables,
for example:

A = 0.5;B = 3.5;

2 Activate the extmode_example model window. Select Update Diagram
from the Edit menu, or press Ctrl+D. As soon as Simulink has updated
the block parameters, the new gain values are downloaded to the target
program, and the effect of the gain change becomes visible on the scopes.

3-59

3 Working with the Real-Time Workshop® Software

3 You can also enter gain values directly into the Gain blocks. To do this,
open the Block Parameters dialog box for Gain block A or B in the model.
Enter a new numerical value for the gain and click Apply. As soon as
you click Apply, the new value is downloaded to the target program and
the effect of the gain change becomes visible on the scope. Similarly, you
can change the frequency, amplitude, or phase of the sine wave signal
by opening the Block Parameters dialog box for the Sine Wave block and
entering a new numerical value in the appropriate field.

Note that because the Sine Wave is a source block, Simulink pauses while
the Block Parameters dialog box is open. You must close the dialog box
by clicking OK, which allows Simulink to continue and enable you to see
the effect of your changes.

Also note that you cannot change the sample time of the Sine Wave block.
Block sample times are part of the structural definition of the model and
are part of the generated code. Therefore, if you want to change a block
sample time, you must stop the external mode simulation, reset the block’s
sample time, and rebuild the executable.

4 To simultaneously disconnect host/target communication and end execution
of the target program, pull down the Simulation menu and select Stop
Real-Time Code. You can also do this from the External Mode Control
Panel.

3-60

Generating Code for a Referenced Model

Generating Code for a Referenced Model

In this section...

“Tutorial Overview” on page 3-61

“Creating and Configuring a Subsystem Within the vdp Model” on page 3-61

“Converting the Model to Use Model Referencing” on page 3-64

“Generating Model Reference Code for a GRT Target” on page 3-68

“Working with Project Directories” on page 3-71

Tutorial Overview
The Model block allows an existing Simulink model to be used as a block in
another model. When a model contains one or more Model blocks, it is called
a parent model. Models represented by Model blocks are called referenced
models in that context.

Model blocks are particularly useful for large-scale modeling applications.
They work by generating code and creating a binary file for each referenced
model, then executing the binary during simulation. The Real-Time Workshop
software generates code for referenced models in a slightly different way than
for top models and stand-alone models, and generates different code than
Simulink does when it simulates them. Follow this tutorial to learn how
Simulink and the Real-Time Workshop software handle Model blocks.

In this tutorial, you create a subsystem in an existing model, convert it to a
referenced model, call it from the top model via a Model block, and generate
code for both models. You accomplish some of these tasks automatically with
a function called Simulink.Subsystem.convertToModelReference. You also
explore the generated code and the project directory using the Model Explorer.

Creating and Configuring a Subsystem Within the
vdp Model
In the first part of this tutorial, you define a subsystem for the vdp
demo model, set configuration parameters for the model, and use the
Simulink.Subsystem.convertToModelReference function to convert it into

3-61

3 Working with the Real-Time Workshop® Software

two new models — the top model (vdptop) and a referenced model vdpmultRM
containing a subsystem you created (vdpmult):

1 In the MATLAB Command Window, create a new working directory
wherever you want to work and cd into it:

mkdir tutorial6
cd tutorial6

2 Open the vdp demo model by typing:

vdp

3 Drag a box around the three blocks on the left to select them, as shown
below:

4 Choose Create Subsystem from the model’s Edit menu.

A subsystem block replaces the selected blocks.

5 If the new subsystem block is not where you want it, move it to a preferred
location.

6 Rename the block vdpmult.

3-62

Generating Code for a Referenced Model

7 Right-click the vdpmult block and select Subsystem Parameters.

The Function Block Parameters dialog box appears.

8 In the Function Block Parameters dialog box, select Treat as atomic
unit, then click OK.

The border of the vdpmult subsystem thickens to indicate that it is now
atomic. An atomic subsystem executes as a unit relative to the parent
model: subsystem block execution does not interleave with parent block
execution. This property makes it possible to extract subsystems for use as
stand-alone models and as functions in generated code.

The block diagram should now appear as follows:

You must set several properties before you can extract a subsystem for use as
a referenced model. To set the necessary properties,

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.

3-63

3 Working with the Real-Time Workshop® Software

4 In the center pane, select Solver.

5 In the right pane, under Solver Options change the Type to Fixed-step,
then click Apply. You must use fixed-step solvers when generating code,
although referenced models can use different solvers than top models.

6 In the center pane, select Optimization. In the right pane, under
Simulation and code generation, select Inline parameters. Click
Apply.

7 In the center pane, select Diagnostics. In the right pane:

a Select the Data Validity tab. In the Signals area, set Signal
resolution to Explicit only.

b Select the Connectivity tab. In the Buses area, setMux blocks used
to create bus signals to error.

8 Click Apply.

The model now has the properties that model referencing requires.

9 In the center pane, click Model Referencing. In the right pane, set
Rebuild options to If any changes in known dependencies detected.
Click Apply. This setting prevents unnecessary code regeneration.

10 In the vdp model window, choose File > Save as. Save the model as
vdptop in your working directory. Leave the model open.

Converting the Model to Use Model Referencing
In this portion of the tutorial, you use the conversion function
Simulink.SubSystem.convertToModelReference to extract the subsystem
vdpmult from vdptop and convert vdpmult into a referenced model named
vdpmultRM. To see the complete syntax of the conversion function, type at
the MATLAB prompt:

help Simulink.SubSystem.convertToModelReference

For additional information, type:

doc Simulink.SubSystem.convertToModelReference

3-64

Generating Code for a Referenced Model

If you want to see a demo of Simulink.SubSystem.convertToModelReference
before using it yourself, type:

sldemo_mdlref_conversion

Simulink also provides a menu command, Convert to Model Block, that
you can use to convert a subsystem to a referenced model. The command calls
Simulink.SubSystem.convertToModelReference with default arguments.
See “Converting a Subsystem to a Referenced Model” in the Simulink
documentation.

Extracting the Subsystem to a Referenced Model
To use Simulink.SubSystem.convertToModelReference to extract vdpmult
and convert it to a referenced model, type:

Simulink.SubSystem.convertToModelReference...
('vdptop/vdpmult', 'vdpmultRM',...
'ReplaceSubsystem', true, 'BuildTarget', 'Sim')

This command:

1 Extracts the subsystem vdpmult from vdptop.

2 Converts the extracted subsystem to a separate model named vdpmultRM
and saves the model to the working directory.

3 In vdptop, replaces the extracted subsystem with a Model block that
references vdpmultRM.

4 Creates a simulation target for vdptop and vdpmultRM.

The converter prints a number of progress messages, and when successful,
terminates with

ans =
1

3-65

3 Working with the Real-Time Workshop® Software

The parent model vdptop now looks like this:

Note the changes in the appearance of the block vdpmult. These changes
indicate that it is now a Model block rather than a subsystem. As a Model
block, it has no contents of its own: the previous contents now exist in the
referenced model vdpmultRM, whose name appears at the top of the Model
block. Widen the Model block as needed to expose the complete name of the
referenced model.

If the parent model vdptop had been closed at the time of conversion, the
converter would have opened it. Extracting a subsystem to a referenced model
does not automatically create or change a saved copy of the parent model. To
preserve the changes to the parent model, save vdptop.

Right-click the Model block vdpmultRM and choose Open Model
’vdpmultRM’ to open the referenced model. The model looks like this:

3-66

Generating Code for a Referenced Model

Files Created and Changed by the Converter
The files in your working directory now consist of the following (not in this
order).

File Description

vdptop.mdl Top model that contains a Model block
where the vdpmult subsystem was

vdpmultRM.mdl Referenced model created for the vdpmult
subsystem

vdpmultRM_msf.mexw32 Static library file (Microsoft Windows
platforms only). The last three characters
of the suffix are system-dependent and may
differ. This file executes when the vdptop
model calls the model block vdpmult. When
called, vdpmult in turn calls the referenced
model vdpmultRM.

/slprj Project directory for generated model
reference code

Code for model reference simulation targets is placed in the slprj/sim
subdirectory. Generated code for GRT, ERT, and other Real-Time Workshop
targets is placed in slprj subdirectories named for those targets. You will
inspect some model reference code later in this tutorial. For more information
on project directories, see “Working with Project Directories” on page 3-71.

3-67

3 Working with the Real-Time Workshop® Software

Running the Converted Model
Open the Scope block in vdptop if it is not visible. In the vdptop window, click
the Start tool or choose Start from the Simulation menu. The model calls
the vdpmultRM_msf simulation target to simulate. The output looks like this:

Generating Model Reference Code for a GRT Target
The function Simulink.SubSystem.convertToModelReference created the
model and the simulation target files for the referenced model vdpmultRM. In
this part of the tutorial, you generate code for that model and the vdptop
model, and run the executable you create:

1 Verify that you are still working in the tutorial6 directory.

2 If the model vdptop is not open, open it. Make sure it is the active window.

3 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

4 In the Model Hierarchy pane, click the + sign preceding the vdptop
model to reveal its components.

5 Click Configuration (Active) in the left pane.

6 In the center pane, select Data Import/Export.

3-68

Generating Code for a Referenced Model

7 Check Time and Output in the Save to workspace section of the right
pane, then click Apply. The pane shows the following information:

These settings instruct the model vdptop (and later its executable) to log
time and output data to MAT-files for each time step.

8 Generate GRT code (the default) and an executable for the top model and
the referenced model by selecting Real-Time Workshop in the center
pane and then clicking the Build button.

The Real-Time Workshop build process generates and compiles code. The
current directory now contains a new file and a new directory:

File Description

vdptop.exe The executable created by the
Real-Time Workshop build process

vdptop_grt_rtw/ The Real-Time Workshop build
directory, containing generated code
for the top model

The Real-Time Workshop build process also generated GRT code for the
referenced model, and placed it in the slprj directory.

3-69

3 Working with the Real-Time Workshop® Software

To view a model’s generated code in Model Explorer, the model must
be open. To use the Model Explorer to inspect the newly created build
directory, vdptop_grt_rtw:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3 Click the + sign preceding Code for vdptop to reveal its components.

4 Click This Model that appears directly under Code for vdptop.

A list of generated code files for vdptop_converted appears in the
Contents pane:

rtmodel.h
vdptop.c
vdptop.h
vdptop.mk
vdptop_private.h
vdptop_types.h

3-70

Generating Code for a Referenced Model

You can browse code in any of these files by selecting a file of interest in
the Contents pane. The code for the file you select appears in the pane
to the right. The figure below illustrates viewing code for vdptop.c. Your
code may differ.

To open a file in a text editor, click a filename, and then click the hyperlink
that appears in the gray area at the top of the Document pane.

Working with Project Directories
When you view generated code in Model Explorer, the files listed in the
Contents pane can exist either in a build directory or a project directory.
Model reference project directories (always rooted under slprj), like build
directories, are created in your current working directory, and this implies
certain constraints on when and where model reference targets are built,
and how they are accessed.

The models referenced by Model blocks can be stored anywhere. A given top
model can include models stored on different file systems and directories. The
same is not true for the simulation targets derived from these models; under
most circumstances, all models referenced by a given top model must be set
up to simulate and generate model reference target code in a single project
directory. The top and referenced models can exist anywhere on your path,
but the project directory is assumed to exist in your current directory.

3-71

3 Working with the Real-Time Workshop® Software

This means that, if you reference the same model from several top models,
each stored in a different directory, you must either

• Always work in the same directory and be sure that the models are on
your path

• Allow separate project directories, simulation targets, and Real-Time
Workshop targets to be generated in each directory in which you work

The files in such multiple project directories are generally quite redundant.
Therefore, to avoid regenerating code for referenced models more times than
necessary, you might want to choose a specific working directory and remain
in it for all sessions.

As model reference code generated for Real-Time Workshop targets as well as
for simulation targets is placed in project directories, the same considerations
as above apply even if you are generating target applications only. That is,
code for all models referenced from a given model ends up being generated in
the same project directory, even if it is generated for different targets and at
different times.

3-72

Documenting a Code Generation Project

Documenting a Code Generation Project

In this section...

“Tutorial Overview” on page 3-73

“Generating Code for the Model” on page 3-74

“Opening Report Generator” on page 3-75

“Setting Report Output Options” on page 3-76

“Specifying Models and Subsystems to Include in a Report” on page 3-78

“Setting Component Options” on page 3-78

“Generating the Report” on page 3-79

“Reviewing the Generated Report” on page 3-79

Tutorial Overview
As explained in “Documenting the Project” on page 2-17, one way of
documenting a Real-Time Workshop code generation project is to use the
Simulink Report Generator software. In this tutorial, you adjust the Simulink
Report Generator settings to include custom code and then generate a report
for the Real-Time Workshop demo rtwdemo_f14. A summary of the steps
for the tutorial follows:

1 Generate code for the model.

2 Open Report Generator.

3 Set report output options.

4 Specify models and subsystems to be included.

5 Set component options.

6 Generate the report.

7 Review the generated report.

3-73

3 Working with the Real-Time Workshop® Software

Note You need a Simulink Report Generator license to complete steps 3
through 5. If you omit those steps and use the default option settings, the
resulting output will vary from what is documented in step 6.

For details on using Report Generator, see the Simulink Report Generator
User’s Guide.

Generating Code for the Model
Before you can use Report Generator to document your project, you must
generate code for the model. To generate code for the rtwdemo_f14 demo,

1 In the MATLAB Current Folder browser, navigate to a directory where
you have write access.

2 Create a working directory from the MATLAB command line by typing:

mkdir report_ex

3 Make report_ex your working directory:

cd report_ex

4 Open the rtwdemo_f14 model by clicking the model name below or by
entering the model name on the MATLAB command line.

rtwdemo_f14

The model appears in a Simulink model window.

5 In the model window, choose File > Save As, navigate to the working
directory, report_ex, and save a copy of the rtwdemo_f14 model as
myf14.mdl.

6 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

7 In the Model Hierarchy pane, click the + sign preceding the model name
to reveal its components.

3-74

Documenting a Code Generation Project

8 Click Configuration (Active) in the left pane.

9 In the Contents pane, click Real-Time Workshop. The Real-Time
Workshop pane appears.

10 Select the Report tab. Clear the Create code generation report and
Launch report automatically check boxes.

11 Select the General tab. Select Generate code only and click Apply.

12 Click Generate code. The Real-Time Workshop build process generates
code for the model.

Opening Report Generator
After you generate the code, open the Report Generator.

1 In the model window, select Tools > Report Generator. The Report
Explorer window opens.

3-75

3 Working with the Real-Time Workshop® Software

2 In the options pane (center), find the folder rtw (\toolbox\rtw) and the
setup file that it contains — codegen.rpt.

3 Double-click codegen.rpt or select it and click the Open report button

. Report Generator displays the structure of the setup file in the
outline pane (left).

Setting Report Output Options
Before generating a report, you can specify report output options, such as the
directory, file name, and format. The following steps explain how to generate
a Microsoft Word report named MyCGModelReport.rtf.

3-76

Documenting a Code Generation Project

1 Review the options listed under Report Options in the properties pane.

2 Leave the Directory field set to Present working directory.

3 Select Custom: for Filename and replace index with the name
MyModelCGReport.

4 For File format, specify Rich Text Format and replace Standard Print
with Numbered Chapters & Sections.

5 In the outline pane (left), click Report - codegen.rpt*. The following
acknowledgment dialog box appears.

6 Click OK.

3-77

3 Working with the Real-Time Workshop® Software

Specifying Models and Subsystems to Include in a
Report
Specify the models and subsystems to be included in the generated report by
setting options in the Model Loop component.

1 In the outline pane (left), select Model Loop. Report Generator displays
Model Loop component options in the properties pane.

2 If not already selected, select Current block diagram for the Model
name option.

3 In the outline pane, click Report - codegen.rpt*. If you modified the
value of the Model name option, the change acknowledgment dialog box
appears. If the dialog box appears, click OK.

Setting Component Options
After setting the report output options, review and, if appropriate, adjust
Real-Time Workshop component options.

1 In the outline pane (left), expand the node Chapter - Generated Code.
By default, the report includes two sections, each containing one of two
Real-Time Workshop report components.

2 Expand the node Section 1 — Code Generation Summary. The Code
Generation Summary component appears.

3 Select Code Generation Summary. Options for the component appear in
the properties pane.

4 Click Help to review the report customizations you can make with the
Code Generation Summary component. For this tutorial, do not customize
the component.

5 Return focus to the Report Explorer window and expand the node Section
1 — Generated Code Listing. The Import Generated Code component
appears.

6 Select Import Generated Code. Options for the component appear in
the properties pane.

3-78

Documenting a Code Generation Project

7 Click Help to review the report customizations you can make with the
Import Generated Code component.

8 Return focus to the Report Explorer window.

Generating the Report
After you adjust report options, from the Report Explorer window, generate
the report by clicking File > Report. A Message List dialog box appears,
which displays messages you can monitor as the report is generated. Model
snapshots also appear during report generation.

For alternative ways of generating reports, see “Generating Reports” in the
Simulink Report Generator documentation.

Reviewing the Generated Report
Review your generated report. Make sure the following information is
included:

• System snapshots (model and subsystem diagrams)

• Block execution order list

• Real-Time Workshop and model version information for generated code

• List of generated files

• Optimization configuration parameter settings

• Real-Time Workshop target selection and build process configuration
parameter settings

• Subsystem map

• File name, path, and generated code listings for the following:

- myf14.c

- rt_nonfinite.c

- myf14.h

- myf14_private.h

- myf14_types.h

3-79

3 Working with the Real-Time Workshop® Software

- rt_nonfinite.h

- rtmodel.h

- rtwtypes.h

3-80

Index

IndexA
accelerated simulation

as an application of Real-Time Workshop
technology 1-14

algorithm development
tools for 1-6

application requirements 2-4

B
build directory

rtwdemo_f14 example 3-15
seeing files 3-15

build process
messages in MATLAB Command

Window 3-14

C
Code Generation Summary component 3-78
code generation tutorial 3-33
code verification tutorial 3-27
code with buffer optimization 3-41

efficiency 3-41
code with expression folding 3-41
code without buffer optimization 3-37
comments options 3-13
configuration parameters 2-6

questions to consider 2-4

D
data logging 3-18

from generated code 3-29
tutorial 3-18
via Scope blocks

example 3-27
debug options 3-11
dialog boxes

Block Parameters 3-49

Configuration Parameters 2-4
External Mode Control Panel 3-55
External Signal and Triggering 3-56
Model Explorer 2-6

directories
build 3-4
working 3-4

documentation 3-73

E
Embedded MATLAB Language Subset

for algorithm development 1-6
embedded microprocessor

as target environment 1-10
executable

running 3-15
external mode

building executable 3-50
control panel 3-55
model setup 3-48
parameter tuning 3-59
running executable 3-54
tutorial 3-47

F
fixed-step solver 3-5

G
generic real-time (GRT) target

tutorial 3-4

H
hardware-in-the-loop (HIL) testing

as an application of Real-Time Workshop
technology 1-14

compared with other types of in-the-loop
testing 1-19

Index-1

Index

host computer
as target environment 1-10

host-based simulation
compared to standalone rapid simulations

and prototyping 1-18

I
Import Generated Code component 3-78
in-the-loop testing

types of 1-19

M
make utility 2-11
MAT-files

creating 3-22
loading 3-30

MATLAB Report Generator
opening 3-75
setting component options for 3-78
setting report output options for 3-76
specifying models and subsystems with 3-78

Model Advisor 2-7
model encryption

as an application of Real-Time Workshop
technology 1-14

Model Explorer
viewing code in 3-70

model referencing
converting to 3-64
definition of 3-61
generating code 3-68
tutorial 3-61

O
on-target rapid prototyping

as an application of Real-Time Workshop
technology 1-14

optimizations

expression folding 3-41
signal storage reuse 3-39

P
parameters

setting correctly 3-5
pilot G Force plot 3-21
processor-in-the-loop (PIL) testing

as an application of Real-Time Workshop
technology 1-14

compared with other types of in-the-loop
testing 1-19

production code generation
as an application of Real-Time Workshop

technology 1-14
project

documenting 3-73
project directory

working with 3-71
prototyping

types of 1-18

R
rapid prototyping

as an application of Real-Time Workshop
technology 1-14

compared to simulations and on-target
prototyping 1-18

rapid simulation
as an application of Real-Time Workshop

technology 1-14
rapid simulations, standalone

compared to host-based simulations and
prototyping 1-18

real-time simulator
as target environment 1-10

Real-Time Workshop
report 3-44

Index-2

Index

Real-Time Workshop Embedded Coder product
application examples of 1-4
key capabilities of 1-4

Real-Time Workshop product
application examples of 1-4
key capabilities of 1-4

Real-Time Workshop Report 3-44
Real-Time Workshop technology

applications of 1-14
introduction to 1-3
prerequisite knowledge for 1-2
products associated with 1-3

Report Generator
opening 3-75
setting component options for 3-78
setting report output options for 3-76
specifying models and subsystems with 3-78

report output options 3-76
reports

generating code generation 3-73
rtwdemo_f14 GRT code generation tutorial 3-4
rtwdemo_f14 model 3-3
run-time interface modules 3-37

S
save to workspace options 3-19
simulation

types of 1-18
Simulink

for algorithm development 1-6
Simulink Report Generator

opening 3-75
setting component options for 3-78
setting report output options for 3-76
specifying models and subsystems with 3-78

software-in-the-loop (SIL) testing

as an application of Real-Time Workshop
technology 1-14

compared with other types of in-the-loop
testing 1-19

subsystems
converting to referenced models 3-64
treating as atomic units 3-63

symbols options 3-12
system simulation

as an application of Real-Time Workshop
technology 1-14

T
target

how to specify 3-7
target environments 1-10
target-based (on-target) rapid prototyping

compared to simulations and rapid
prototyping 1-18

testing
types of 1-19

tuning parameters 3-59
tutorials

building generic real-time program 3-4
code generation 3-33
code verification 3-27
data logging 3-18
external mode 3-47
model referencing 3-61

V
V-model

applying Real-Time Workshop technology
to 1-16

variable-step solver 3-5

Index-3

	toc
	Getting Started with Real-Time Workshop Technology
	What You Need to Know to Use Real-Time Workshop Technology
	What You Can Accomplish Using Real-Time Workshop Technology
	How the Technology Can Fit Into Your Development Process
	Tools for Algorithm Development
	Target Environments
	Applications

	How You Can Apply the Technology to the V-Model for System Devel
	What Is the V-Model?
	Types of Simulation and Prototyping
	Types of In-the-Loop Testing for Verification and Validation

	How to Develop an Application Using Real-Time Workshop Software
	Workflow for Developing Applications Using Real-Time Workshop So
	Mapping Application Requirements to Configuration Options
	Adjusting Configuration Settings
	Running the Model Advisor
	Generating Code
	Building an Executable Program
	Verifying the Executable Program
	Naming and Saving the Configuration Set
	Adding and Copying Configuration Sets

	Documenting the Project

	Working with the Real-Time Workshop Software
	Demonstration Model: rtwdemo_f14
	Building a Generic Real-Time Program
	Tutorial Overview
	Working and Build Directories
	Setting Program Parameters
	Selecting the Target Configuration
	Building and Running the Program
	Contents of the Build Directory

	Data Logging
	Tutorial Overview
	Data Logging During Simulation
	Data Logging from Generated Code

	Code Verification
	Tutorial Overview
	Logging Signals via Scope Blocks
	Logging Simulation Data
	Logging Data from the Generated Program
	Comparing Numerical Results of the Simulation and the Generated

	First Look at Generated Code
	Tutorial Overview
	Setting Up the Model
	Generating Code Without Buffer Optimization
	Generating Code with Buffer Optimization
	Further Optimization: Expression Folding
	HTML Code Generation Reports

	Working with External Mode Using GRT
	Tutorial Overview
	Setting Up the Model
	Building the Target Executable
	Running the External Mode Target Program
	Tuning Parameters

	Generating Code for a Referenced Model
	Tutorial Overview
	Creating and Configuring a Subsystem Within the vdp Model
	Converting the Model to Use Model Referencing
	Extracting the Subsystem to a Referenced Model
	Files Created and Changed by the Converter
	Running the Converted Model

	Generating Model Reference Code for a GRT Target
	Working with Project Directories

	Documenting a Code Generation Project
	Tutorial Overview
	Generating Code for the Model
	Opening Report Generator
	Setting Report Output Options
	Specifying Models and Subsystems to Include in a Report
	Setting Component Options
	Generating the Report
	Reviewing the Generated Report

	Index

